RESUMEN
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genéticaRESUMEN
Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Condrocitos/patología , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartritis/patología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Factor de Crecimiento Epidérmico/metabolismo , Humanos , Hipertrofia/patología , Glicoproteínas de Membrana/metabolismo , Ratones , Transducción de Señal/fisiologíaRESUMEN
The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep). Bypassing Oep using a photoactivatable receptor, or an Oep-independent ligand, allows activation of Nodal target genes for an extended period of time. These results suggest that the reduced expression of Oep causes the loss of responsiveness to Nodal signals in the prospective ectoderm. Indeed, extending the presence of Oep prolongs the window of competence to respond to Nodal signals. Our findings suggest a simple mechanism in which the decreasing level of one component of the Nodal signaling pathway regulates the loss of mesendodermal competence in the prospective ectoderm.
Asunto(s)
Desarrollo Embrionario/genética , Endodermo/embriología , Proteínas de Homeodominio/genética , Mesodermo/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Animales Modificados Genéticamente , Ectodermo/embriología , Ectodermo/metabolismo , Embrión no Mamífero , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Proteína Nodal/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Cripto-1 is a protein expressed during embryonal development and has been linked to several malignant processes in cancer. Since the discovery of cripto-1 in the late 1980s, it has become a subject of biomarker investigation in several types of cancer which in many cases relies on immunolocalization of cripto-1 using antibodies. Investigating cripto-1 expression and localization in primary glioblastoma cells, we discovered nonspecific binding of cripto-1 antibody to the extracellular matrix Geltrex. A panel of four cripto-1 antibodies was investigated with respect to their binding to the Geltrex matrix and to the cripto-1 positive control cells NTERA2. The cripto-1 expression was varied for the different antibodies with respect to cellular localization and fixation methods. To further elaborate on these findings, we present a systematic review of cripto-1 antibodies found in the literature and highlight some possible cross reactants with data on sequence alignments and structural comparison of EGF domains.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Matriz Extracelular/metabolismo , Proteínas Ligadas a GPI/inmunología , Glioblastoma/patología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Proteínas de Neoplasias/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/clasificación , Movimiento Celular , Glioblastoma/inmunología , Glioblastoma/metabolismo , Humanos , Células Tumorales CultivadasRESUMEN
Congenital heart defects are the most common birth defects in humans, and those that affect the proper alignment of the outflow tracts and septation of the ventricles are a highly significant cause of morbidity and mortality in infants. A late differentiating population of cardiac progenitors, referred to as the anterior second heart field (AHF), gives rise to the outflow tract and the majority of the right ventricle and provides an embryological context for understanding cardiac outflow tract alignment and membranous ventricular septal defects. However, the transcriptional pathways controlling AHF development and their roles in congenital heart defects remain incompletely elucidated. Here, we inactivated the gene encoding the transcription factor MEF2C in the AHF in mice. Loss of Mef2c function in the AHF results in a spectrum of outflow tract alignment defects ranging from overriding aorta to double-outlet right ventricle and dextro-transposition of the great arteries. We identify Tdgf1, which encodes a Nodal co-receptor (also known as Cripto), as a direct transcriptional target of MEF2C in the outflow tract via an AHF-restricted Tdgf1 enhancer. Importantly, both the MEF2C and TDGF1 genes are associated with congenital heart defects in humans. Thus, these studies establish a direct transcriptional pathway between the core cardiac transcription factor MEF2C and the human congenital heart disease gene TDGF1. Moreover, we found a range of outflow tract alignment defects resulting from a single genetic lesion, supporting the idea that AHF-derived outflow tract alignment defects may constitute an embryological spectrum rather than distinct anomalies.
Asunto(s)
Factor de Crecimiento Epidérmico/fisiología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/fisiología , Proteínas de Neoplasias/fisiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Factor de Crecimiento Epidérmico/genética , Femenino , Eliminación de Gen , Corazón/embriología , Cardiopatías Congénitas/genética , Defectos del Tabique Interventricular/genética , Ventrículos Cardíacos , Humanos , Hibridación in Situ , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/fisiología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Morfogénesis/genética , Proteínas de Neoplasias/genética , Organogénesis , Análisis de Secuencia de ARN , Distribución Tisular , Transcripción Genética , Transposición de los Grandes Vasos/genéticaRESUMEN
Induced pluripotent stem cells (iPS cells) are a prospective resource for regenerative biomedicine. iPS cells can differentiate into any type of stem, progenitor and somatic cells to help replace structures within damaged organs or tissues. However, iPS cells themselves, can produce malignant tumors if they are injected into the body of an immunocompatible or immunodeficient recipient. Thus, it is necessary to detect any residual iPS cells content in biomedical cell products obtained from iPS cells and destined for transplantation. In this article we describe searches for iPS cells in heterogeneous cell mixtures, using two different methods-quantitative RT-PCR and droplet digital PCR (ddPCR). In experiments with various heterogeneous mixtures, including mixtures with neural stem cells, we found that the OCT4, TDGF1 and LIN28 genes are the best markers for such a search, and droplet digital PCR provides the greatest measurement accuracy, which is 0.002%. Thus, we have confirmed the advantage of using droplet digital PCR in the search for pluripotent stem cells in heterogeneous cell mixtures. We hope that this data can be useful for biosafety control in regenerative biomedicine.
Asunto(s)
Marcadores Genéticos , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Línea Celular , Técnicas de Cocultivo , Contención de Riesgos Biológicos , Proteínas Ligadas a GPI/genética , Células Madre Embrionarias Humanas/química , Humanos , Células Madre Pluripotentes Inducidas/química , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Neoplasias/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Medicina RegenerativaRESUMEN
BACKGROUND: Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs. RESULTS: Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs. Knockdown of SOX2OT inhibited the proliferation, migration and invasion of GSCs, and promoted GSCs apoptosis. MiR-194-5p and miR-122 were down-regulated in human glioma tissues and GSCs, and miR-194-5p and miR-122 respectively exerted tumor-suppressive functions by inhibiting the proliferation, migration and invasion of GSCs, while promoting GSCs apoptosis. Knockdown of SOX2OT significantly increased the expression of miR-194-5p and miR-122 in GSCs. Dual-luciferase reporter assay revealed that SOX2OT bound to both miR-194-5p and miR-122. SOX3 and TDGF-1 were up-regulated in human glioma tissues and GSCs. Knockdown of SOX3 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and decreased TDGF-1 mRNA and protein expression through direct binding to the TDGF-1 promoter. Over-expression of miR-194-5p and miR-122 decreased the mRNA and protein expression of SOX3 by targeting its 3'UTR. Knockdown of TDGF-1 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and inhibited the JAK/STAT signaling pathway. Furthermore, SOX3 knockdown also inhibited the SOX2OT expression through direct binding to the SOX2OT promoter and formed a positive feedback loop. CONCLUSION: This study is the first to demonstrate that the SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 pathway forms a positive feedback loop and regulates the biological behaviors of GSCs, and these findings might provide a novel strategy for glioma treatment.
Asunto(s)
Neoplasias Encefálicas/patología , Proteínas Ligadas a GPI/genética , Glioblastoma/patología , Péptidos y Proteínas de Señalización Intercelular/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXB1/genética , Regulación hacia Arriba , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Retroalimentación Fisiológica , Proteínas Ligadas a GPI/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/metabolismoRESUMEN
EGF-CFC proteins are obligate coreceptors for Nodal signaling and are thus required for gastrulation and left-right patterning. Species with multiple family members show evidence of specialization. For example, mouse Cripto is required for gastrulation, whereas Cryptic is involved in left-right patterning. However, the members of the family across model organisms have little sequence conservation beyond the EGF-CFC domain, posing challenges for determining their evolutionary history and functional conservation. In this study we outline the evolutionary history of the EGF-CFC family of proteins. We traced the EGF-CFC gene family from a single gene in the deuterostome ancestor through its expansion and functional specialization in tetrapods, and subsequent gene loss and translocation in eutherian mammals. Mouse Cripto and Cryptic, zebrafish Tdgf1, and all three Xenopus EGF-CFC genes (Tdgf1, Tdgf1.2 and Cripto.3) and are all descendants of the ancestral Tdgf1 gene. We propose that subsequent to the family expansion in tetrapods, Tdgf1B (Xenopus Tdgf1.2) acquired specialization in the left-right patterning cascade, and after its translocation in eutherians to a different chromosomal location, Cfc1/Cryptic has maintained that specialization.
RESUMEN
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-ß ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-ß and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
RESUMEN
PURPOSE: We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. MATERIALS AND METHODS: All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m(2)/day) and leucovorin (20 mg/m(2)/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). RESULTS: High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). CONCLUSION: GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.
Asunto(s)
Quimioradioterapia Adyuvante/métodos , Proteínas Ligadas a GPI/metabolismo , Proteínas de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Terapia Neoadyuvante , Proteínas de Neoplasias/metabolismo , Neoplasias del Recto/metabolismo , Neoplasias del Recto/terapia , Anciano , Biomarcadores de Tumor , Chaperón BiP del Retículo Endoplásmico , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/uso terapéutico , Proteínas Ligadas a GPI/genética , Proteínas de Choque Térmico/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Laparoscopía , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , PronósticoRESUMEN
Congenital Heart Disease (CHD) is the most frequent and deadly birth defect. Patients with CHD that survive the neonatal period often progress to develop advanced heart failure requiring specialized treatment including cardiac transplantation. A full understanding of the transcriptional networks that direct cardiac progenitors during heart development will enhance our understanding of both normal cardiac function and pathological states. These findings will also have important applications for emerging therapies and the treatment of congenital heart disease. Furthermore, a number of shared transcriptional pathways or networks have been proposed to regulate the development and regeneration of tissues such as the heart. We have utilized transgenic technology to isolate and characterize cardiac progenitor cells from the developing mouse heart and have begun to define specific transcriptional networks of cardiovascular development. Initial studies identified Tdgf1 as a potential target of Nkx2-5. To mechanistically dissect the regulation of this molecular program, we utilized an array of molecular biological techniques to confirm that Nkx2-5 is an upstream regulator of the Tdgf1 gene in early cardiac development. These studies further define Nkx2-5 mediated transcriptional networks and enhance our understanding of cardiac morphogenesis.
RESUMEN
PURPOSE: We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. MATERIALS AND METHODS: All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m2/day) and leucovorin (20 mg/m2/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). RESULTS: High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). CONCLUSION: GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.