RESUMEN
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis. In this study, we investigated the role of Bid in the crosstalk between the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and TRAIL-induced apoptosis. When human colorectal carcinoma HCT116 cells were treated with the ferroptosis-inducing agents artesunate and erastin in combination with TRAIL, TRAIL-induced activation of caspase-8 was enhanced, and subsequently, the truncation of Bid was increased. Similar results were observed when ovarian adenocarcinoma OVCAR-3 cells were treated with the ferroptotic agents in combination with TRAIL. Results from studies with Bid mutants reveal that the truncation of Bid and the presence of intact BH3 domains are critical for synergistic apoptosis. Nonfunctional Bid mutants were not able to activate the mitochondria-dependent apoptosis pathway, which is required for the conversion of p19 to p17, the active form of caspase-3. These results indicate that Bid plays a critical role in the crosstalk between the ferroptotic agent-induced ER stress response and TRAIL-induced apoptosis.
Asunto(s)
Apoptosis , Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/patología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasa 8/metabolismo , Estrés del Retículo Endoplásmico , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Abnormalities of the tumor vasculature result in insufficient blood supply and development of a tumor microenvironment that is characterized by low glucose concentrations, low extracellular pH, and low oxygen tensions. We previously reported that glucose-deprived conditions induce metabolic stress and promote tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. In this study, we examined whether the metabolic stress-associated endoplasmic reticulum (ER) stress response pathway plays a pivotal role in the enhancement of TRAIL cytotoxicity. We observed no significant cytotoxicity when human colorectal cancer SW48 cells were treated with various doses of TRAIL (2-100 ng/ml) for 4 h or glucose (0-25 mM) for 24 h. However, a combination of TRAIL and low glucose-induced dose-dependent apoptosis through activation of caspases (-8, -9, and -3). Studies with activating transcription factor 4 (ATF4), C/EBP-homologous protein (CHOP), p53 upregulated modulator of apoptosis (PUMA), or death receptor 5 (DR5)-deficient mouse embryonic fibroblasts or HCT116 cells suggest that the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis are involved in the combined treatment-induced apoptosis. Moreover, the combined treatment-induced apoptosis was completely suppressed in BH3 interacting-domain death agonist (Bid)- or Bcl-2-associated X protein (Bax)-deficient HCT116 cells, but not Bak-deficient HCT116 cells. Interestingly, the combined treatment-induced Bax oligomerization was suppressed in PUMA-deficient HCT116 cells. These results suggest that glucose deprivation enhances TRAIL-induced apoptosis by integrating the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis, consequently amplifying the Bid-Bax-associated mitochondria-dependent pathway.