Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.677
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 173(3): 569-580.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677510

RESUMEN

Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau people ("Sea Nomads") of Southeast Asia live a subsistence lifestyle based on breath-hold diving and are renowned for their extraordinary breath-holding abilities. However, it is unknown whether this has a genetic basis. Using a comparative genomic study, we show that natural selection on genetic variants in the PDE10A gene have increased spleen size in the Bajau, providing them with a larger reservoir of oxygenated red blood cells. We also find evidence of strong selection specific to the Bajau on BDKRB2, a gene affecting the human diving reflex. Thus, the Bajau, and possibly other diving populations, provide a new opportunity to study human adaptation to hypoxia tolerance. VIDEO ABSTRACT.


Asunto(s)
Adaptación Fisiológica , Contencion de la Respiración , Buceo , Tamaño de los Órganos , Hidrolasas Diéster Fosfóricas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Pueblo Asiatico , Eritrocitos/citología , Etnicidad , Femenino , Variación Genética , Genómica , Humanos , Hipoxia , Indonesia/etnología , Pulmón , Masculino , Persona de Mediana Edad , Oxígeno/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Bazo/fisiología , Población Blanca , Adulto Joven
2.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
3.
Proc Natl Acad Sci U S A ; 121(30): e2402560121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39018199

RESUMEN

The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.


Asunto(s)
Diferenciación Celular , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Células Fotorreceptoras Retinianas Conos , Epitelio Pigmentado de la Retina , Simportadores , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/metabolismo , Simportadores/genética , Epitelio Pigmentado de la Retina/metabolismo , Ratones , Hormonas Tiroideas/metabolismo , Electrorretinografía
4.
Proc Natl Acad Sci U S A ; 120(21): e2219770120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186843

RESUMEN

Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab-but not Thraa or Thrb-inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size-either through changes to TH metabolism or other hormone-independent pathways-can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Hormonas Tiroideas/genética , Aletas de Animales/fisiología , Regeneración/fisiología
5.
Dev Biol ; 515: 121-128, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029570

RESUMEN

Regenerating tissues must remember or interpret their spatial position, using this information to restore original size and patterning. The external skeleton of the zebrafish caudal fin is composed of 18 rays; after any portion of the fin is amputated, position-dependent regenerative growth restores each ray to its original length. We tested for transcriptional differences during regeneration of proximal versus distal tissues and identified 489 genes that differed in proximodistal expression. Thyroid hormone directs multiple aspects of ray patterning along the proximodistal axis, and we identified 364 transcripts showing a proximodistal expression pattern that was dependent on thyroid hormone context. To test what aspects of ray positional identity are directed by extrinsic environental cues versus remembered identity autonomous to the tissue, we transplanted distal portions of rays to proximal environments and evaluated regeneration within the new location. Native regenerating proximal tissue showed robust expression of scpp7, a transcript with thyroid-regulated proximal enrichment; in contrast, regenerating rays originating from transplanted distal tissue showed reduced (distal-like) expression during outgrowth. These distal-to-proximal transplants regenerated far beyond the length of the graft itself, indicating that cues from the proximal environment promoted additional growth. Nonetheless, these transplants initiated regeneration at a much slower rate compared to controls, suggesting memory of distal identity was retained by the transplanted tissue. This early growth retardation caused rays that originated from transplants to grow noticeably shorter than neighboring native rays. While several aspects of fin ray morphology (bifurcation, segment length) were found to be determined by the environment, we found that both regeneration speed and ray length are remembered autonomously by tissues, and that persist through multiple rounds of amputation and regeneration.

6.
J Biol Chem ; 300(7): 107477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879014

RESUMEN

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.


Asunto(s)
Astrocitos , Proliferación Celular , Yoduro Peroxidasa , Yodotironina Deyodinasa Tipo II , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Animales , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Astrocitos/metabolismo , Astrocitos/citología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Células HEK293 , Regiones no Traducidas 3' , Ratones Noqueados , Línea Celular Tumoral , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
7.
J Pathol ; 263(4-5): 466-481, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924548

RESUMEN

The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligasas , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/enzimología , Humanos , Células Acinares/patología , Células Acinares/metabolismo , Células Acinares/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/enzimología , Metaplasia/patología , Metaplasia/metabolismo , Plasticidad de la Célula , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ratones , Línea Celular Tumoral , Proliferación Celular , Ratones Noqueados , Regulación Neoplásica de la Expresión Génica , Lesiones Precancerosas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/enzimología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/metabolismo , Proteínas Portadoras
8.
Exp Cell Res ; 437(2): 114017, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555013

RESUMEN

Thyroid hormone receptor ß (THRß) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRß sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRß plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRß gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRß using in-silico analysis and cell-based assays. We examined the THRß truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRß-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRß variants is also affected. The study highlights that structural and conformational attributes of THRß are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.


Asunto(s)
Receptores beta de Hormona Tiroidea , Factores de Transcripción , Receptores beta de Hormona Tiroidea/genética , Ligandos , Factores de Transcripción/genética , Mutación Puntual , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo
9.
Cell Mol Life Sci ; 81(1): 65, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281222

RESUMEN

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.


Asunto(s)
Glándula Tiroides , Factores de Transcripción , Animales , Ratones , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Proteínas Represoras/genética , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Tirotropina/genética , Tirotropina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(49): e2209884119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454759

RESUMEN

Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor ß2 (TRß2) in control of gradient genes, many of which are enriched for TRß2 binding sites and TRß2-regulated open chromatin. Deletion of TRß2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRß2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.


Asunto(s)
Receptores de Hormona Tiroidea , Células Fotorreceptoras Retinianas Conos , Animales , Ratones , Regulación de la Expresión Génica , Opsinas/genética , Retina , Opsinas de Bastones/genética
11.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322758

RESUMEN

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Asunto(s)
Hipotiroidismo Congénito , Células de Purkinje , Ratones , Animales , Células de Purkinje/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Calcio/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Depresión , Hipotiroidismo Congénito/metabolismo , Sinapsis/metabolismo , Cerebelo/fisiología
12.
Nano Lett ; 24(1): 305-311, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38149630

RESUMEN

Thyroid hormones (THs) are a variety of iodine-containing hormones that demonstrate critical physiological impacts on cellular activities. The assessment of thyroid function and the diagnosis of thyroid disorders require accurate measurement of TH levels. However, largely due to their structural similarities, the simultaneous discrimination of different THs is challenging. Nanopores, single-molecule sensors with a high resolution, are suitable for this task. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a single nickel ion immobilized to the pore constriction has enabled simultaneous identification of five representative THs including l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2) and 3,3'-diiodo-l-thyronine (3,3'-T2). To automate event classification and avoid human bias, a machine learning algorithm was also developed, reporting an accuracy of 99.0%. This sensing strategy is also applied in the analysis of TH in a real human serum environment, suggesting its potential use in a clinical diagnosis.


Asunto(s)
Nanoporos , Humanos , Níquel , Hormonas Tiroideas/análisis , Hormonas Tiroideas/química , Tiroxina , Tironinas
13.
Pflugers Arch ; 476(7): 1065-1075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679646

RESUMEN

Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1ß production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8-12 weeks, by triiodothyronine (7 µg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.


Asunto(s)
Cardiomegalia , Hipertiroidismo , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipertiroidismo/metabolismo , Hipertiroidismo/complicaciones , Inflamasomas/metabolismo , Ratones , Masculino , Cardiomegalia/metabolismo , Ratones Noqueados , Caspasa 1/metabolismo
14.
J Neurochem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742992

RESUMEN

Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.

15.
Neurobiol Dis ; 199: 106572, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901782

RESUMEN

Within the adult mouse subventricular zone (SVZ), neural stem cells (NSCs) produce neuroblasts and oligodendrocyte precursor cells (OPCs). T3, the active thyroid hormone, influences renewal and commitment of SVZ progenitors. However, how regulators of T3 availability affect these processes is less understood. Using Mct8/Dio2 knockout mice, we investigated the role of MCT8, a TH transporter, and DIO2, the T3-generating enzyme, in regulating adult SVZ-neurogliogenesis. Single-cell RNA-Seq revealed Mct8 expression in various SVZ cell types in WT mice, while Dio2 was enriched in neurons, astrocytes, and quiescent NSCs. The absence of both regulators in the knockout model dysregulated gene expression, increased the neuroblast/OPC ratio and hindered OPC differentiation. Immunostainings demonstrated compromised neuroblast migration reducing their supply to the olfactory bulbs, impairing interneuron differentiation and odor discrimination. These findings underscore the pivotal roles of MCT8 and DIO2 in neuro- and oligodendrogenesis, offering targets for therapeutic avenues in neurodegenerative and demyelinating diseases.


Asunto(s)
Ventrículos Laterales , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Células-Madre Neurales , Neurogénesis , Animales , Neurogénesis/fisiología , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/metabolismo , Ventrículos Laterales/metabolismo , Yodotironina Deyodinasa Tipo II , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Diferenciación Celular/fisiología , Simportadores/genética , Simportadores/metabolismo , Bulbo Olfatorio/metabolismo , Ratones Endogámicos C57BL , Células Precursoras de Oligodendrocitos/metabolismo
16.
Neurobiol Dis ; : 106621, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097035

RESUMEN

Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.

17.
Biochem Biophys Res Commun ; 704: 149704, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430700

RESUMEN

Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.


Asunto(s)
Cóclea , Sinapsis , Animales , Ratones , Sinapsis/fisiología , Hormonas Tiroideas , Ganglio Espiral de la Cóclea , Audición/fisiología , Ratones Noqueados
18.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33757992

RESUMEN

The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in-depth analysis on their specific action on intestinal stem cells is lacking. By using ex vivo 3D organoid cultures and molecular approaches, we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3 treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating the number of stem cells, the expression of their specific markers and the commitment of progenitors into lineage-specific differentiation. In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.


Asunto(s)
Proliferación Celular , Intestinos , Transducción de Señal , Células Madre/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Femenino , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Células Madre/citología , Receptores alfa de Hormona Tiroidea/genética , Triyodotironina/genética
19.
Clin Endocrinol (Oxf) ; 100(3): 304-311, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38148509

RESUMEN

BACKGROUND: The hypothyroid phenotype associated with resistance to thyroid hormone alpha (RTH-α) is associated with a diverse clinical picture. On the other hand, thyroid-stimulating hormone (TSH) levels are normal. Free triiodothyronine (fT3) and free thyroxine (fT4) levels can also be normal; however, normo- or macrocytic anaemia is usually present in reported cases. Diagnosis is challenging and there is limited data regarding screening methods. OBJECTIVE: The study aimed to assess the efficiency of a screening strategy for RTH-α. SUBJECTS AND METHODS: Out of a total of 6540 children evaluated at the outpatient clinics of paediatric neurology over 2 years and who underwent complete blood count and thyroid function tests, 432 were found to have anaemia. Within this group, we identified 42 children without an underlying specific neurological aetiology who exhibited normo- or macrocytic anaemia, normal TSH levels, fT3 levels in the upper half of the normal range or high, and fT4 levels in the lower half of the normal range or low. We excluded one patient who had already been diagnosed with RTH-α and nine patients could not be reached. Subsequently, clinical evaluation, biochemical assessment, and THRA sequencing analysis were conducted on 32 children. The findings were compared with those of the known RTH-α patients in our unit. RESULTS: The median age of the patients was 5.7 (5.1-7.4) years, and 22 of them were males (69%). The main reasons for assessment in paediatric neurology clinics were autism spectrum disorder (n = 12, 38%), epilepsy (n = 11, 34%), and delay in developmental stages (n = 8, 25%). Constipation was present in five of the cases (16%), while the closure of the anterior fontanelle and tooth eruption were delayed in two cases (6%) and one case (3%), respectively. The median length/height and weight standard deviation (SD) scores were 0.3 [(-0.8)-(1.1)] and -0.1 [(-0.8)-(0.3)], respectively. The median fT3, fT4, and TSH levels were 4.6 (4.2-5.0) pg/mL, 0.9 (0.8-1.0) ng/dL, and 2.2 (1.8-3.1) uIU/mL, respectively. Thirteen of the patients (41%) had high fT3 levels, while none of them had low fT4 levels. The normo- or macrocytic anaemia rate was 47% (normocytic/macrocytic, n = 8/7) at the time of reassessment. Serum creatine kinase (CK) was elevated in five patients (16%; one had anaemia). None of the subjects had a pathological variant in THRA. Known RTH-α patients had significantly lower median height SD score, higher rates of delayed tooth eruption and closure of the anterior fontanelle, lower haemoglobin levels, and higher mean corpuscular volume (MCV) and CK levels as compared to those found without RTH-α. CONCLUSIONS: This approach found one known patient with RTH-α but did not reveal any new cases. Notably, normo- or macrocytic anaemia did not persist in nearly half of the screened patients. A screening strategy that takes clinical findings and prominent laboratory features suggestive of RTH-α into account could lower unnecessary genetic analysis of THRA in patients presenting with neurological problems.


Asunto(s)
Anemia Macrocítica , Trastorno del Espectro Autista , Masculino , Niño , Humanos , Preescolar , Femenino , Tiroxina , Triyodotironina , Hormonas Tiroideas , Pruebas de Función de la Tiroides , Tirotropina
20.
Clin Endocrinol (Oxf) ; 101(2): 180-190, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38856700

RESUMEN

OBJECTIVES: The use of levothyroxine (LT4) treatment aiming to improve fertility in euthyroid women with positive thyroid peroxidase antibodies (TPOAb) is not supported by the available evidence. The aim of the study was to document the use of LT4 by European thyroid specialists in such patients. DESIGN: The data presented derive from Treatment of Hypothyroidism in Europe by Specialists, an International Survey (THESIS), a questionnaire conducted between 2019 and 2021 to document the management of hypothyroidism by European thyroid specialists. Here, we report the aggregate results on the use of LT4 in infertile, euthyroid women with positive TPOAb. RESULTS: A total of 2316/5406 (42.8%) respondents stated that LT4 may be indicated in TPOAb positive euthyroid women with infertility. The proportion of those replying positively to this question varied widely across different countries (median 39.4, range 22.9%-83.7%). In multivariate analyses males (OR: 0.8; CI: 0.7-0.9) and respondents >60 years (OR: 0.7; 0.6-0.8) were the least inclined to consider LT4 for this indication. Conversely, respondents managing many thyroid patients ("weekly" [OR: 1.4; CI: 1.0-1.9], "daily" [OR: 1.8; CI: 1.3-2.4]) and practicing in Eastern Europe (OR: 1.5; CI: 1.3-1.9) were most likely to consider LT4. CONCLUSIONS: A remarkably high number of respondents surveyed between 2019 and 2021, would consider LT4 treatment in TPOAb positive euthyroid women with infertility. This view varied widely across countries and correlated with sex, age and workload, potentially influencing patient management. These results raise concerns about potential risks of overtreatment.


Asunto(s)
Autoanticuerpos , Hipotiroidismo , Infertilidad Femenina , Tiroxina , Humanos , Tiroxina/uso terapéutico , Femenino , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/sangre , Europa (Continente) , Adulto , Autoanticuerpos/sangre , Infertilidad Femenina/tratamiento farmacológico , Persona de Mediana Edad , Masculino , Encuestas y Cuestionarios , Yoduro Peroxidasa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA