Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Más filtros

Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(3): e0162123, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38364016

RESUMEN

Antimicrobial resistance is emerging in clinical strains of Clostridioides difficile. Ibezapolstat (IBZ) is a DNA polymerase IIIC inhibitor that has completed phase II clinical trials. IBZ has potent in vitro activity against wild-type, susceptible strains but its effect on C. difficile strains with reduced susceptibility to metronidazole (MTZ), vancomycin (VAN), or fidaxomicin (FDX) has not been tested. The primary objective of this study was to test the antibacterial properties of IBZ against multidrug-resistant C. difficile strains. The in vitro activity, bactericidal, and time-kill activity of IBZ versus comparators were evaluated against 100 clinical strains of which 59 had reduced susceptibility to other C. difficile antibiotics. Morphologic changes against a multidrug resistance strain were visualized by light and scanning electron microscopy. The overall IBZ MIC50/90 values (µg/mL) for evaluated C. difficile strains were 4/8, compared with 2/4 for VAN, 0.5/1 for FDX, and 0.25/4 for MTZ. IBZ MIC50/90 values did not differ based on non-susceptibility to antibiotic class or number of classes to which strains were non-susceptible. IBZ bactericidal activity was similar to the minimum inhibitory concentration (MIC) and maintained in wild-type and non-susceptible strains. Time-kill assays against two laboratory wild-type and two clinical non-susceptible strains demonstrated sustained IBZ activity despite reduced killing by comparator antibiotics for IBZ and VAN non-susceptible strains. Microscopy visualized increased cell lengthening and cellular damage in multidrug-resistant strains exposed to IBZ sub-MIC concentrations. This study demonstrated the potent antibacterial activity of IBZ against a large collection of C. difficile strains including multidrug-resistant strains. This study highlights the therapeutic potential of IBZ against multidrug-resistant strains of C. difficile.


Asunto(s)
Antiinfecciosos , Clostridioides difficile , Infecciones por Clostridium , Nucleósidos de Purina , Humanos , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Vancomicina/farmacología , Vancomicina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Fidaxomicina/farmacología , Fidaxomicina/uso terapéutico , Pruebas de Sensibilidad Microbiana
2.
Microb Pathog ; 192: 106705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761892

RESUMEN

This study aimed to investigate the potential of cinnamon oil nanoemulsion (CONE) as an antibacterial agent against clinical strains of colistin-resistant Klebsiella pneumoniae and its anticancer activity. The prepared and characterized CONE was found to have a spherical shape with an average size of 70.6 ± 28.3 nm under TEM and a PDI value of 0.076 and zeta potential value of 6.9 mV using DLS analysis. The antibacterial activity of CONE against Klebsiella pneumoniae strains was investigated, and it was found to have higher inhibitory activity (18.3 ± 1.2-30.3 ± 0.8 mm) against the tested bacteria compared to bulk cinnamon oil (14.6 ± 0.88-20.6 ± 1.2) with MIC values ranging from 0.077 to 0.31 % v/v which equivalent to 0.2-0.82 ng/ml of CONE. CONE inhibited the growth of bacteria in a dose and time-dependent manner based on the time-kill assay in which Klebsiella pneumoniae B-9 was used as a model among the bacterial strains under investigation. The study also investigated the expression of the mcr-1 gene in the Klebsiella pneumoniae strains and found that all strains were positive for the gene expression and subsequently its presence. The level of mcr-1 gene expression among the B-2, B-4, B-9, and B-11 control strains and that treated with colistin was similar, but it was different in both B-5 and B-2. However, all strains exhibited a significant downregulation in gene expression (ranging from 3.97 to 8.7-fold) after their treatment with CONE. Additionally, the CONE-treated bacterial cells appeared with a great deformation compared with control cells under TEM. Finally, CONE exhibited selective toxicity against different cancer cell lines depending on comparison with the normal cell lines.


Asunto(s)
Antibacterianos , Cinnamomum zeylanicum , Colistina , Farmacorresistencia Bacteriana , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Colistina/farmacología , Humanos , Antibacterianos/farmacología , Cinnamomum zeylanicum/química , Línea Celular Tumoral , Emulsiones/farmacología , Aceites Volátiles/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antineoplásicos/farmacología , Nanopartículas/química
3.
Int Microbiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134830

RESUMEN

The massive emergence of antimicrobial resistance in recent decades has rendered the use of a single-agent strategy ineffective. Consequently, the combination of different therapeutic agents has emerged as a promising new approach. The aim of the present study was to investigate the combined effect of Chlorella vulgaris methanol extract (CVME) and Origanum elongatum essential oil (OEEO) on methicillin-resistant Staphylococcus aureus (MRSA). Thus, the antibacterial activity of OEEO and CVME on Escherichia coli, Staphylococcus aureus, and MRSA was evaluated using the agar well diffusion and broth microdilution methods. The killing activity of CVME and OEEO, individually and in combination, on MRSA ATCC 43300 was tested using the time-kill assay. The synergistic effect was examined by determining the fractional inhibitory concentration index (FICI) using the checkerboard test. The results showed very significant antibacterial activity against all the bacteria tested, for both OEEO and CVME, with minimum inhibitory concentrations (MICs) ranging from 0.125 to 0.25% (v/v) for OEEO and from 3.12 to 6.25 mg mL-1 for CVME. Minimum bactericidal concentration (MBC) values for OEEO and CVME were in the range 0.125-0.5% (v/v) and 6.25-12.5 mg mL-1, respectively. The inhibition zones associated with OEEO were distinctly greater than those associated with CVME for all the bacteria examined. When used individually, the time-kill curves of OEEO and CVME revealed a dose-dependent effect on MRSA proliferation. Compared with controls, both agents were able to prolong the latent phase of growth curves and decelerate bacterial growth. The killing effect of OEEO on MRSA was considerably higher than that observed with CVME. OEEO prevented MRSA proliferation at only 1/2 of its MIC, while the CVME did so at 2 times its MIC. The combination of OEEO with CVME demonstrated a synergistic effect against MRSA, with a FIC index value of 0.49. The findings therefore suggest that the combination of C. vulgaris methanol extract and O. elongatum essential oil at very low doses may be promising anti-MRSA candidates. A search of the published literature revealed that, to our knowledge, no studies have yet been carried out on the antibacterial potential of combining essential oils and microalgae extracts in the fight against MRSA.

4.
Virus Genes ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256307

RESUMEN

One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of Acinetobacter baumannii. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three Acinetobacter phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR A. baumannii strains. The phages exhibited siphovirus morphology. Out of a total of 30 XDR A. baumannii isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of A. baumannii. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.

5.
Ann Clin Microbiol Antimicrob ; 23(1): 60, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965559

RESUMEN

BACKGROUND: Gram-negative bacteria (GNB) are becoming increasingly resistant to a wide variety of antibiotics. There are currently limited treatments for GNB, and the combination of antibiotics with complementary mechanisms has been reported to be a feasible strategy for treating GNB infection. The inability to cross the GNB outer membrane (OM) is an important reason that a broad spectrum of Gram-positive only class of antibiotics (GPOAs) is lacking. Polymyxins may help GPOAs to permeate by disrupting OM of GNB. OBJECTIVE: To identify what kind of GPOAs can be aided to broaden their anti-GNB spectrum by polymyxins, we systematically investigated the synergy of eight GPOAs in combination with colistin (COL) and polymyxin B (PMB) against GNB in vitro. METHODS: The synergistic effect of COL or PMB and GPOAs combinations against GNB reference strains and clinical isolates were determined by checkerboard tests. The killing kinetics of the combinations were assessed using time-kill assays. RESULTS: In the checkerboard tests, polymyxins-GPOAs combinations exert synergistic effects characterized by species and strain specificity. The synergistic interactions on P. aeruginosa strains are significantly lower than those on strains of A. baumannii, K. pneumoniae and E. coli. Among all the combinations, COL has shown the best synergistic effect in combination with dalbavancin (DAL) or oritavancin (ORI) versus almost all of the strains tested, with FICIs from 0.16 to 0.50 and 0.13 to < 0.28, respectively. In addition, the time-kill assays demonstrated that COL/DAL and COL/ORI had sustained bactericidal activity. CONCLUSIONS: Our results indicated that polymyxins could help GPOAs to permeate the OM of specific GNB, thus showed synergistic effects and bactericidal effects in the in vitro assays. In vivo combination studies should be further conducted to validate the results of this study.


Asunto(s)
Antibacterianos , Colistina , Sinergismo Farmacológico , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Polimixina B , Polimixinas , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Polimixinas/farmacología , Polimixina B/farmacología , Humanos , Colistina/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos
6.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611721

RESUMEN

Despite the technologies applied to food production, microbial contamination and chemical deterioration are still matters of great concern. In order to limit these phenomena, new natural approaches should be applied. In this context, the present study aimed to assess the antioxidant and anti-Clostridial effects of two different polyphenolic extracts derived from olive mill vegetation water, one liquid (LE) and one encapsulated (EE). The extracts have been preliminary characterized using Liquid Chromatography Quadrupole Time-Of Flight spectrometry. The Oxygen Radical Absorbance Capacity method was used to determine the antioxidant capacity, registering a higher value for EE compared to that for LE (3256 ± 85 and 2446 ± 13 µgTE/g, respectively). The antibacterial activity against C. perfringens, C. botulinum and C. difficile was studied by the agar well diffusion method, MIC and MBC determination and a time-kill test. The results confirm that EE and LE are able to limit microbial growth, albeit with minor effects when the phenolic compounds are encapsulated. Further studies are needed to evaluate the possible application of these extracts in food systems.


Asunto(s)
Clostridioides difficile , Olea , Aguas Residuales , Antioxidantes/farmacología , Clostridium , Clostridium perfringens
7.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37096387

RESUMEN

AIM: Candida auris, fast evolving drug-resistant fungus, poses an imminent global health threat. Alternative drug-resistance nonevoking treatment options are necessary. This study explored the antifungal and antibiofilm efficacies of Withania somnifera seed oil extracted using super critical CO2 (WSSO) against clinically isolated Fluconazole-resistant C. auris and its putative mode-of-action. METHODS AND RESULTS: Effects of WSSO on C. auris were tested by broth microdilution method, with observed IC50 at 5.96 mg ml-1. Time-kill assay revealed that WSSO is fungistatic. Mechanistically, ergosterol binding and sorbitol protection assays showed that C. auris cell membrane and cell wall are the targets for WSSO. Lactophenol: Cotton-Blue: Trypan-Blue staining confirmed loss of intracellular contents by WSSO treatment. Candida auris biofilm formation was disrupted by WSSO (BIC50: 8.52 mg ml-1). Additionally, WSSO exhibited dose and time-dependent mature biofilm eradication property with 50% efficacies at 23.27, 19.28, 18.18, and 7.22 mg ml-1 over 24, 48, 72, and 96 h, respectively. Biofilm eradication by WSSO was further substantiated through scanning electron microscopy. Standard-of-Care Amphotericin B, at its break-point concentration, (2 µg ml-1) was found to be inefficient as an antibiofilm agent. CONCLUSIONS: WSSO is a potent antifungal agent effective against planktonic C. auris and its biofilm.


Asunto(s)
Candida , Withania , Candida auris , Antifúngicos/farmacología , Biopelículas , Aceites de Plantas/farmacología , Pruebas de Sensibilidad Microbiana
8.
New Microbiol ; 46(3): 264-270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747471

RESUMEN

Carbapenemase-producing Enterobacteriaceae (CPE) are an increasing threat to global public health. Treatment of CPE isolates, like New Delhi metallo-ß-lactamase (NDM), is limited and often necessitates combination therapies. The aim of this study was to evaluate the synergistic meropenem/fosfomycin combination against K.pneumoniae-producing NDM isolates. Fosfomycin/meropenem, fosfomycin/colistin and meropenem/colistin were tested alone and in combination, using e-test and time-kill assay against 20 clinical carbapenemase-producing K. pneumonia (CPKp NDM) isolates collected from September 2022 to December 2022. K. pneumoniae strains were resistant to meropenem, ceftazidime/avibactam and ceftolozano/tazobactam, 75% and 80% of isolates were susceptible for cefiderocol and for colistin respectively. Fosfomycin/meropenem combination was synergic in 95% (n=19) strains. Fosfomycin/colistin and colistin/meropenem combination showed only 10% synergistic combination strains. In 16 isolates (80%) indifference action for fosfomycin/colistin and colistin/meropenem was reported. For 0.8% of CpKP NDM isolates colistin/meropenem and fosfomycin/colistin combinations found to be antagonistic. In this study, time kill assay showed combination therapies action versus K.pneumoniae metallo-b-lactamase producing (NDM) strains and confirmed the synergistic action of fosfomycin/meropenem combination. In vitro synergy testing should be routinely performed in multidrug resistance infections and combo therapies can be used as a possible alternative in targeted patients with the goal of reducing overall antibiotic costs.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Fosfomicina , Humanos , Meropenem/farmacología , Fosfomicina/farmacología , Colistina/farmacología , Klebsiella pneumoniae
9.
Molecules ; 28(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049941

RESUMEN

This study aimed to investigate the antibacterial [minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)] and antibiofilm activity [log10 colony forming unit/mL (CFU/mL) and biofilm disruption] of copper-doped phosphate glass (CDPG) against Streptococcus oralis, Enterococcus faecalis, Lactobacillus casei, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. METHODS: the antibacterial activity was determined using microbroth dilution and time-kill assay. The antibiofilm activity was investigated using crystal violet and confocal laser scanning microscopy. Bacteria growing in absence of CDPG were used as controls. RESULTS: the MIC was ≥125 mg of CPDG/mL; the log10 CFU/mL reduction ranged from 2.66-3.14 to 6.23-9.65 after 4 and 24 h respectively. Generally, no growth was observed after 24 h of treatment with CDPG; the MBC was 250 mg/mL for L. casei and S. oralis while 500 mg/mL for the rest of the bacteria. The highest and lowest antibiofilm activity was observed against S. oralis and E. coli respectively. Three patterns of complete biofilm disruption were seen: (i) large areas with E. fecalis and S. oralis, (ii) medium-size pockets with S. aureus and P. aeruginosa, or (iii) small areas with E. coli and L. casei. CONCLUSION: CDPG can be potentially used as an antibacterial and an antibiofilm agent against oral biofilm-forming bacteria.


Asunto(s)
Cobre , Staphylococcus aureus , Cobre/farmacología , Escherichia coli , Fosfatos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
10.
Medicina (Kaunas) ; 59(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241179

RESUMEN

Background and Objectives: Developing effective treatment outcomes for multidrug-resistant Acinetobacter baumannii (MRAB) infections, with colistin and tigecycline the current frontline therapies, is challenging, because of the risk of renal toxicity and low blood concentrations of active ingredients when administered intravenously. This study aimed to identify the effect of combination therapy using conventional antimicrobial agents that are used for treating drug-resistant bacteria and the additional synergistic effect of four probiotic culture extracts isolated from the human body and Lactobacillus preparations. Materials and Methods: The antimicrobial combination and synergistic effect of adding Lactobacillus extract against 33 strains of A. baumannii isolated from pus, urine, and other specimens submitted to the Department of Laboratory Medicine of a university hospital, located in Gyeonggi-do, Korea, was investigated over a 3-year period between January 2017 and December 2019. Results: Antimicrobial susceptibility tests on bacteria isolated in clinical practice demonstrated that 26 strains (79%) were MRAB, while multi-locus sequence typing indicated that ST191 was the predominant type (45%; n = 15). Checkerboard test results demonstrated that combination therapy using meropenem and colistin had the highest synergistic effect (fractional inhibitory concentration index = 0.5), while the time-kill assay test using Lactobacillus spp. culture extract exhibited an inhibitory effect within 1 h and complete inhibition of MRAB within 3 h. Lactobacillus paracasei exhibited the fastest antimicrobial reactivity and longest sustained antimicrobial activity. Conclusion: These findings provide useful foundational data for an appropriate combination of colistin with other antimicrobial agents for treating MRAB infection in clinical settings, and the use of various probiotic culture extracts to reduce the required dosage, and therefore toxicity of colistin.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Tipificación de Secuencias Multilocus , Sinergismo Farmacológico , Infecciones por Acinetobacter/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple
11.
Bioorg Med Chem ; 64: 116777, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487101

RESUMEN

Ever increasing drug resistance has become an impeding threat that continues to hamper effective tackling of otherwise treatable tuberculosis (TB). Such dismal situation necessitates identification and exploration of multitarget acting newer chemotypes with bactericidal efficacy as a priority, that could efficiently hinder uncontrolled spread of TB. In this context, herein we present design, synthesis and bio-evaluation of chalcone tethered bezoxazole-2-amines as promising anti-TB chemotypes. Preliminary screening of 24 compounds revealed initial hits 3,4,5-trimethoxyphenyl and 5-nitrofuran-2-yl derivative exhibiting selective inhibition of Mycobacterium tuberculosis (Mtb) H37Rv. Further, structural optimization of hit compounds generated 12 analogues, amongst which 5-nitrofuran-2-yl derivatives displayed potent inhibition of not only drug-susceptible (DS) Mtb but also clinical isolates of drug-resistant (DR) Mtb strains equipotently. Moreover, cell viability test against Vero cells found these compounds with favourable selectivity. Time kill analysis led to the identification of the lead compound (E)-1-(4-((5-chlorobenzo[d]oxazol-2-yl)amino)phenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one, that demonstrated bactericidal killing of Mtb bacilli. Together with acceptable microsomal stability, the lead compound of the series manifested all desirable traits of a promising antitubercular agent.


Asunto(s)
Mycobacterium tuberculosis , Nitrofuranos , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Aminas/farmacología , Animales , Antituberculosos/química , Benzoxazoles/farmacología , Chlorocebus aethiops , Pruebas de Sensibilidad Microbiana , Nitrofuranos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Células Vero
12.
Lett Appl Microbiol ; 74(1): 63-72, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34623693

RESUMEN

Streptococcus suis is an emerging zoonotic pathogen causing different diseases, in both humans and pigs. Generally, the control of this pathogen is based on antimicrobial therapy, but the development of bacterial resistance has led one to look for new options. In this sense, the essential oils (EOs) constitute a promising alternative. The activity of cinnamon, common thyme and red thyme EOs and their main active compounds (cinnamaldehyde and thymol) against S. suis isolates from pigs (n = 50) and humans (n = 6) was determined by the broth microdilution method. MIC50-90, MBC50-90 and the bactericidal index (BI) (minimal bactericidal concentration (MBC)/minimal inhibitory concentration (MIC)) were calculated. Also, the time-kill curve of each product against the S. suis P1/7 European reference strain was determined. No differences in the MIC or MBC values were observed between all the tested products, which suggest a homogeneous behaviour of S. suis, independently of their origin, organ of isolation or resistance profile. All the products showed a concentration-dependent and time-dependent killing activity and achieved the virtual eradication of S. suis at supra-inhibitory concentrations within the first 5 min of exposure, except cinnamaldehyde that showed only bacteriostatic effect. It suggests that these products could be utilized as antimicrobials in veterinary medicine for the control of this zoonotic pathogen.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Streptococcus suis , Thymus (Planta) , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Cinnamomum zeylanicum , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Porcinos
13.
Acta Microbiol Immunol Hung ; 69(3): 215-219, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895557

RESUMEN

Treatment of infections caused by OXA-48 carbapenemase producing multidrug-resistant isolates often necessitates combination therapy. In vitro effect of different antibiotic combinations against multidrug-resistant (MDR) Klebsiella pneumoniae isolates were evaluated in this study.Meropenem-tobramycin (MER+TOB), meropenem-ciprofloxacin (MER+CIP), colistin-meropenem (COL+MER), colistin-ciprofloxacin (COL+CIP) and colistin-tobramycin (COL+TOB) combinations were tested by time kill-assays. Each antibiotic alone and in combination at their Cmax values were tested against 4 clinical K. pneumoniae isolates at 1, 2, 4, 6, 8, 12 and 24 h. Effect of colistin and its associations were also assessed at 30 min. Bactericidal activity was defined as ≥3log10 CFU mL-1 decrease compared with initial inoculum. Synergy was defined as ≥2log10CFU mL-1 decrease by the combination compared with the most active single agent. Presence of blaOXA-48, blaNDM, blaVIM, blaIMP, blaKPC and blaCTX-M-1 genes was screened by PCR using specific primers.The blaOXA-48 gene was identified together with blaCTXM-1 group gene in all isolates. COL+MER demonstrated to be synergistic and bactericidal. MER+TOB showed synergistic and bactericidal effect on two strains although, regrowth was seen on other two strains at 24 h. MER+CIP exhibited indifferent effect on the strains.Combination therapy could be a potential alternative to treat MDR K. pneumoniae infections. This combination might prevent resistance development and secondary effects of colistin monotherapy. MER+TOB and MER+CIP might have an isolate-dependent effect, that may not always result in synergism.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Colistina/farmacología , Meropenem/farmacología , Antibacterianos/farmacología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Ciprofloxacina/farmacología , Tobramicina/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Klebsiella/tratamiento farmacológico , Sinergismo Farmacológico
14.
Chem Biodivers ; 19(2): e202100532, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34929067

RESUMEN

MRSA infection is one of the alarming diseases in the current scenario. Identifying newer molecules to treat MRSA infection is of urgent need. In the present study, we have designed fluorinated thiazolidinone derivatives with various aryl/heteroaryl units at 5th position of the thiazolidinone core as promising anti-MRSA agents. All the compounds were screened for antibacterial activity against four bacterial strains. Among the tested compounds, the halogenated compounds with simple arylidene ring, (5Z)-5-[(3-chloro-2-fluorophenyl)methylidene]-2-[(1,3-thiazol-2-yl)amino]-1,3-thiazol-4(5H)-one (4b), (5Z)-5-[(4-chloro-2-fluorophenyl)methylidene]-2-[(1,3-thiazol-2-yl)amino]-1,3-thiazol-4(5H)-one (4c), (5Z)-5-[(3-fluoro-4-methylphenyl)methylidene]-2-[(1,3-thiazol-2-yl)amino]-1,3-thiazol-4(5H)-one (4f) and (5Z)-5-[(3,5-difluorophenyl)methylidene]-2-[(1,3-thiazol-2-yl)amino]-1,3-thiazol-4(5H)-one (4g) showed excellent activity with MIC 3.125-6.25 µg/mL against S. aureus and P. aeruginosa organism. Furthermore, these potent compounds were screened against MRSA strains, ESKAPE panel organism, and H37Rv mycobacterium strain. Compounds 4c (MIC 0.39 µg/mL), and 4f (MIC 0.39 and 0.79 µg/mL) displayed promising activity against MRSA strains (ATCC and clinical isolates, respectively). The most potent compounds, 4c and 4f eradicated the growth of bacterial colonies in a time-kill assay indicated that these are bactericidal in nature. The preliminary toxicity study of the potent molecules revealed that these compounds are non-hemolytic in nature as they did not induce lysis in human RBCs. In addition, the molecular docking and dynamics studies of compounds 4b, 4c, 4f and 4g were carried out on MurB protein of S. aureus (PDB code: 1HSK). Docking results demonstrated remarkable hydrogen bonding interaction with key amino acids ARG310, ASN83, GLY79 and π-π interactions with TYR149 which confirm the mode of action of the molecules.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
15.
Drug Dev Res ; 83(6): 1305-1330, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716118

RESUMEN

Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.


Asunto(s)
Adamantano , Antiinfecciosos , Adamantano/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Ciprofloxacina/farmacología , Girasa de ADN/genética , Girasa de ADN/farmacología , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
16.
Molecules ; 28(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615226

RESUMEN

For dental caries and periodontal diseases initiated by dental plaque (as bacterial communities) and to inhibit the growth of oral pathogenic bacteria, oral care products containing antiseptic active ingredients are highly recommended, nonetheless, side effects of such actives are a concern (teeth discoloration/staining and taste perception, for example). In this context, we challenged xylityl sesquicaprylate, an antiseptic compound from natural resources, as an active ingredient to be used in an alcohol-free mouthwash formulation. The xylityl sesquicaprylate sample was compared to a respective blank mouthwash formulation and one containing triclosan. The in vitro efficacy was screened by the time-kill assay against eight microorganisms. The xylityl sesquicaprylate-containing mouthwash (0.45% w/w) presented a particularly interesting profile of efficacy against Actinomyces viscosus, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, with results of greater magnitude to reduce the log10 of those microorganisms in comparison with the triclosan sample.


Asunto(s)
Antiinfecciosos Locales , Caries Dental , Triclosán , Humanos , Antiinfecciosos Locales/farmacología , Antisépticos Bucales/farmacología , Triclosán/farmacología , Caries Dental/tratamiento farmacológico , Porphyromonas gingivalis
17.
Molecules ; 27(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36234837

RESUMEN

The aim of our study was to determine the susceptibility of 15 Candida albicans sputum isolates on fluconazole and caspofungin, as well as the antifungal potential of Lavandula angustifolia essential oil (LAEO). The commercial LAEO was analyzed using gas chromatography-mass spectrometry. The antifungal activity was evaluated using EUCAST protocol. A killing assay was performed to evaluate kinetics of 2% LAEO within 30 min treatment. LAEO with major constituents' linalool (33.4%) and linalyl acetate (30.5%) effective inhibited grows of C. albicans in concentration range 0.5-2%. Fluconazole activity was noted in 67% of the isolates with MICs in range 0.06-1 µg/mL. Surprisingly, 40% of isolates were non-wild-type (non-WT), while MICs for WT ranged between 0.125-0.25 µg/mL. There were no significant differences in the LAEO MICs among fluconazole-resistant and fluconazole-susceptible sputum strains (p = 0.31) and neither among caspofungin non-WT and WT isolates (p = 0.79). The 2% LAEO rapidly achieved 50% growth reduction in all tested strains between 0.2 and 3.5 min. Within 30 min, the same LAEO concentration exhibited a 99.9% reduction in 27% isolates. This study demonstrated that 2% solution of LAEO showed a significant antifungal activity which is equally effective against fluconazole and caspofungin susceptible and less-susceptible strains.


Asunto(s)
Lavandula , Aceites Volátiles , Antifúngicos/farmacología , Candida , Candida albicans , Caspofungina/farmacología , Niño , Farmacorresistencia Fúngica , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Esputo
18.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296428

RESUMEN

Multi-drug resistant species such as Candida auris are a global health threat. This scenario has highlighted the need to search for antifungal alternatives. Essential oils (EOs), or some of their major compounds, could be a source of new antifungal molecules. The aim of this study was to evaluate the in vitro activity of EOs and some terpenes against C. auris and other Candida spp. The eleven EOs evaluated were obtained by hydro-distillation from different Colombian plants and the terpenes were purchased. EO chemical compositions were obtained by gas chromatography/mass spectrometry (GC/MS). Antifungal activity was evaluated following the CLSI standard M27, 4th Edition. Cytotoxicity was tested on the HaCaT cell line and fungal growth kinetics were tested by time-kill assays. Candida spp. showed different susceptibility to antifungals and the activity of EOs and terpenes was strain-dependent. The Lippia origanoides (thymol + p-cymene) chemotype EO, thymol, carvacrol, and limonene were the most active, mainly against drug-resistant strains. The most active EOs and terpenes were also slightly cytotoxic on the HaCaT cells. The findings of this study suggest that some EOs and commercial terpenes can be a source for the development of new anti-Candida products and aid the identification of new antifungal targets or action mechanisms.


Asunto(s)
Candida , Aceites Volátiles , Antifúngicos/farmacología , Antifúngicos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol , Limoneno , Colombia , Terpenos/química , Pruebas de Sensibilidad Microbiana
19.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235118

RESUMEN

New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4-72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Hierro/uso terapéutico , Ligandos , Quinazolinas , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Tripanocidas/química , Trypanosoma/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
20.
Artículo en Inglés | MEDLINE | ID: mdl-33468471

RESUMEN

Synergy between piperacillin-tazobactam and meropenem against KPC-producing Klebsiella pneumoniae was recently demonstrated. We sought to test the combination against a broader range of serine carbapenemase producers. We tested the combination against 10 KPC-producing Escherichia coli and 10 OXA-48 family-producing K. pneumoniae isolates. Antibiotic concentrations used are achievable in critically ill patients. The combination was synergistic against 7 of 10 KPC producers and 9 of 10 OXA-48 producers. There was no synergy detected in control isolates producing NDM-1.


Asunto(s)
Serina , beta-Lactamasas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Klebsiella pneumoniae , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Combinación Piperacilina y Tazobactam , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA