Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920533

RESUMEN

Network topology plays a key role in determining the characteristics and dynamical behaviors of a network. But in practice, network topology is sometimes hidden or uncertain ahead of time because of network complexity. In this paper, a robust-synchronization-based topology observer (STO) is proposed and applied to solve the problem of identifying the topology of complex delayed networks (TICDNs). In comparison to the existing literature, the proposed STO does not require any prior knowledge about the range of topological parameters and does not have strict limits on topology type. Furthermore, the proposed STO is suitable not only for networks with fixed coupling strength, but also for networks with adaptive coupling strength. Finally, a few comparison examples for TICDNs are used to verify the feasibility and efficiency of the proposed STO, and the results show that the proposed STO outperforms the other methods.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36277673

RESUMEN

Time-synchronized state estimation for reconfigurable distribution networks is challenging because of limited real-time observability. This paper addresses this challenge by formulating a deep learning (DL)-based approach for topology identification (TI) and unbalanced three-phase distribution system state estimation (DSSE). Two deep neural networks (DNNs) are trained for time-synchronized DNN-based TI and DSSE, respectively, for systems that are incompletely observed by synchrophasor measurement devices (SMDs) in real-time. A data-driven approach for judicious SMD placement to facilitate reliable TI and DSSE is also provided. Robustness of the proposed methodology is demonstrated by considering non-Gaussian noise in the SMD measurements. A comparison of the DNN-based DSSE with more conventional approaches indicates that the DL-based approach gives better accuracy with smaller number of SMDs.

3.
IEEE Trans Signal Process ; 68: 2870-2882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33746467

RESUMEN

Graphs are pervasive in different fields unveiling complex relationships between data. Two major graph-based learning tasks are topology identification and inference of signals over graphs. Among the possible models to explain data interdependencies, structural equation models (SEMs) accommodate a gamut of applications involving topology identification. Obtaining conventional SEMs though requires measurements across nodes. On the other hand, typical signal inference approaches 'blindly trust' a given nominal topology. In practice however, signal or topology perturbations may be present in both tasks, due to model mismatch, outliers, outages or adversarial behavior. To cope with such perturbations, this work introduces a regularized total least-squares (TLS) approach and iterative algorithms with convergence guarantees to solve both tasks. Further generalizations are also considered relying on structured and/or weighted TLS when extra prior information on the perturbation is available. Analyses with simulated and real data corroborate the effectiveness of the novel TLS-based approaches.

4.
PeerJ Comput Sci ; 10: e1688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435577

RESUMEN

At present, the reconfiguration, maintenance, and review of power lines play a pivotal role in maintaining the stability of electrical grid operations and ensuring the accuracy of electrical energy measurements. These essential tasks not only guarantee the uninterrupted functioning of the power system, thereby improving the reliability of the electricity supply but also facilitate precise electricity consumption measurement. In view of these considerations, this article endeavors to address the challenges posed by power line restructuring, maintenance, and inspections on the stability of power grid operations and the accuracy of energy metering. To accomplish this goal, this article introduces an enhanced methodology based on the hidden Markov model (HMM) for identifying the topology of distribution substations. This approach involves a thorough analysis of the characteristic topology structures found in low-voltage distribution network (LVDN) substations. A topology identification model is also developed for LVDN substations by leveraging time series data of electricity consumption measurements and adhering to the principles of energy conservation. The HMM is employed to streamline the dimensionality of the electricity consumption data matrix, thereby transforming the topology identification challenge of LVDN substations into a solvable convex optimization problem. Experimental results substantiate the effectiveness of the proposed model, with convergence to minimal error achieved after a mere 50 iterations for long time series data. Notably, the method attains an impressive discriminative accuracy of 0.9 while incurring only a modest increase in computational time, requiring a mere 35.1 milliseconds. By comparison, the full-day data analysis method exhibits the shortest computational time at 16.1 milliseconds but falls short of achieving the desired accuracy level of 0.9. Meanwhile, the sliding time window analysis method achieves the highest accuracy of 0.95 but at the cost of a 50-fold increase in computational time compared to the proposed method. Furthermore, the algorithm reported here excels in terms of energy efficiency (0.89) and load balancing (0.85). In summary, the proposed methodology outperforms alternative approaches across a spectrum of performance metrics. This article delivers valuable insights to the industry by fortifying the stability of power grid operations and elevating the precision of energy metering. The proposed approach serves as an effective solution to the challenges entailed by power line restructuring, maintenance, and inspections.

5.
Neural Netw ; 165: 150-163, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295204

RESUMEN

The topological structures of multi-layer networks have an important influence on their dynamical properties, but in most cases the topological structures of networks are unknown. Hence, this paper pays attention to investigating topology identification problems for multi-layer networks with stochastic perturbations. Both intra-layer coupling and inter-layer coupling are incorporated into the research model. Based on the graph-theoretic method and Lyapunov function, topology identification criteria for stochastic multi-layer networks are obtained by designing a suitable adaptive controller. Furthermore, to estimate the time of identification, the finite-time identification criteria are obtained by finite-time control technique. Finally, double-layer Watts-Strogatz small-world networks are presented for numerical simulations to illustrate the correctness of theoretical results.


Asunto(s)
Modelos Teóricos , Procesos Estocásticos , Factores de Tiempo
6.
Cogn Neurodyn ; 17(1): 203-220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36704630

RESUMEN

Studies have shown that Parkinson's, epilepsy and other brain deficits are closely related to the ability of neurons to synchronize with their neighbors. Therefore, the neurobiological mechanism and synchronization behavior of neurons has attracted much attention in recent years. In this contribution, it is numerically investigated the complex nonlinear behaviour of the Hindmarsh-Rose neuron system through the time responses, system bifurcation diagram and Lyapunov exponent under different system parameters. The system presents different and complex dynamic behaviors with the variation of parameter. Then, the identification of the nonlinear dynamics and topologies of the Hindmarsh-Rose neural networks under unknown dynamical environment is discussed. By using the deterministic learning algorithm, the unknown dynamics and topologies of the Hindmarsh-Rose system are locally accurately identified. Additionally, the identified system dynamics can be stored and represented in the form of constant neural networks due to the convergence of system parameters. Finally, based on the time-invariant representation of system dynamics, a fast dynamical pattern recognition method via system synchronization is constructed. The achievements of this work will provide more incentives and possibilities for biological experiments and medical treatment as well as other related clinical researches, such as the quantifying and explaining of neurobiological mechanism, early diagnosis, classification and control (treatment) of neurologic diseases, such as Parkinson's and epilepsy. Simulations are included to verify the effectiveness of the proposed method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA