Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
New Phytol ; 243(5): 1823-1839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39005107

RESUMEN

Cone enlargement is a crucial process for seed production and reproduction in gymnosperms. Most of our knowledge of cone development is derived from observing anatomical structure during gametophyte development. Therefore, the exact molecular mechanism underlying cone enlargement after fertilization is poorly understood. Here, we demonstrate that sucrose promotes cone enlargement in Torreya grandis, a gymnosperm species with relatively low rates of cone enlargement, via the TgNGA1-TgWRKY47-TgEXPA2 pathway. Cell expansion plays a significant role in cone enlargement in T. grandis. 13C labeling and sucrose feeding experiments indicated that sucrose-induced changes in cell size and number contribute to cone enlargement in this species. RNA-sequencing analysis, transient overexpression in T. grandis cones, and stable overexpression in tomato (Solanum lycopersicum) suggested that the expansin gene TgEXPA2 positively regulates cell expansion in T. grandis cones. The WRKY transcription factor TgWRKY47 directly enhances TgEXPA2 expression by binding to its promoter. Additionally, the NGATHA transcription factor TgNGA1 directly interacts with TgWRKY47. This interaction suppresses the DNA-binding ability of TgWRKY47, thereby reducing its transcriptional activation on TgEXPA2 without affecting the transactivation ability of TgWRKY47. Our findings establish a link between sucrose and cone enlargement in T. grandis and elucidate the potential underlying molecular mechanism.


Asunto(s)
Proteínas de Plantas , Sacarosa , Taxaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Sacarosa/metabolismo , Sacarosa/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Taxaceae/genética , Taxaceae/crecimiento & desarrollo
2.
Int Microbiol ; 27(2): 361-376, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37453003

RESUMEN

With the increasingly serious problem of phosphorus deficiency in the subtropical zone, chemical fertilizers are widely used. But it pollutes the environment. Phosphorus-solubilizing microorganisms (PSMs) are referred to as a new solution to this problem. We explored the phosphorus-dissolving characteristics of PSB strains isolated from the rhizosphere soil of Torreya grandis to provide a theoretical basis for selecting the strain for managing phosphorus deficiency in subtropical soils and also provides a more sufficient theoretical basis for the utilization of PSMs. From 84 strains, three strains exhibiting high phosphorus solubility and strong IAA producing capacity were selected through a series of experiments. The phosphate-solubilizing capacity of the three selected strains W1, W74, and W83 were 339.78 mg/L, 332.57 mg/L, and 358.61 mg/L, respectively. Furthermore, W1 showed the strongest IAA secreting capacity of 8.62 mg/L, followed by W74 (7.58 mg/L), and W83 (7.59 mg/L). Determination by metabolites, it was observed that these three strains dissolved phosphorus by secreting a large amount of lactic acid, aromatic acid, and succinic acid. The genome of these PSBs were sequenced and annotated in this study. Our results revealed that PSB primarily promotes their metabolic pathway, especially carbon metabolism, to secrete plenty organic acids for dissolving insoluble phosphorus.


Asunto(s)
Fósforo , Suelo , Fosfatos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Genómica , Microbiología del Suelo
3.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891770

RESUMEN

Terpene aroma compounds are key quality attributes of postharvest Torreya grandis nuts, contributing to their commercial value. However, terpene biosynthesis and regulatory networks in different T. grandis cvs. are still poorly understood. Here, chief cvs. 'Xi Fei' and 'Xiangya Fei' were investigated for their differences in terpene biosynthesis and gene expression levels during postharvest ripening using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and transcriptomic datasets. A total of 28 and 22 aroma compounds were identified in 'Xi Fei' and 'Xiangya Fei', respectively. Interestingly, differences in aroma composition between the two cvs. were mostly attributed to D-limonene and α-pinene levels as key determinants in Torreya nuts' flavor. Further, transcriptome profiling, correlation analysis, and RT-qPCR annotated two novel genes, TgTPS1 in 'Xi Fei' and TgTPS2 in 'Xiangya Fei', involved in terpene biosynthesis. In addition, six transcription factors (TFs) with comparable expression patterns to TgTPS1 and four TFs to TgTPS2 were identified via correlation analysis of a volatile and transcriptome dataset to be involved in terpene biosynthesis. Our study provides novel insight into terpene biosynthesis and its regulation at the molecular level in T. grandis nut and presents a valuable reference for metabolic engineering and aroma improvement in this less explored nut.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Terpenos , Terpenos/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Odorantes/análisis
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612669

RESUMEN

The multidrug and toxin efflux (MATE) family participates in numerous biological processes and plays important roles in abiotic stress responses. However, information about the MATE family genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements associated with stress and hormonal responses. In addition, we discovered that most TgMATE genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures). Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall, our findings offer valuable information for the characterization of the TgMATE gene mechanism in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of Torreya grandis.


Asunto(s)
Taxaceae , Toxinas Biológicas , Fitomejoramiento , Aluminio , Bioensayo , Estrés Fisiológico/genética
5.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731397

RESUMEN

A chemical investigation of the arils of Torreya grandis led to the isolation of seven abietane-type diterpenoids (compounds 1-7) including three previously undescribed compounds, one unreported natural product, and three known analogs. The structures of these compounds were determined by means of spectroscopy, single-crystal X-ray diffraction, and ECD spectra. An antibacterial activity assay showed that compounds 5 and 6 had significant inhibitory effects on methicillin-resistant Staphylococcus aureus, with MIC values of 100 µM. Moreover, compounds 1, 3, 4, and 7 exhibited anti-neuroinflammatory activity in LPS-stimulated BV-2 microglia cells, with the IC50 values ranging from 38.4 to 67.9 µM.


Asunto(s)
Abietanos , Antibacterianos , Abietanos/química , Abietanos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Estructura Molecular , Línea Celular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Lipopolisacáridos/farmacología
6.
Plant Dis ; 107(6): 1874-1882, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36480731

RESUMEN

Cherry tomatoes (Solanum lycopersicum) are becoming increasingly popular due to their nutrition and delicious flavor. However, cherry tomatoes are highly perishable and susceptible to various pathogenic microorganisms after harvest, such as Botrytis cinerea. In the pretest experiment, we screened out three kinds of plant essential oils (EOs) (Torreya grandis oil, Eriobotrya japonica oil, and Citrus medica oil) that have strong fungicidal activity on B. cinerea from cherry tomatoes. To further evaluate the postharvest preservation application prospect of these three oils for cherry tomatoes, the oils were extracted from different parts of three plants by hydrodistillation, and their chemical constituents were analyzed by gas chromatography-mass spectrometry. The main representative components of T. grandis oil, E. japonica oil, and C. medica oil were δ-cadinene (11.76%), transnerolidol (9.70%), and 5,7-dimethoxycoumarin (23.22%), respectively. These three EOs effectively inhibited the mycelial growth of B. cinerea in vitro, with EC50 values of 81.672, 144.046, and 221.500 µl/liter, respectively. Compared with the blank control and other oil treatments, the T. grandis oil (at a concentration of 200 µl/liter) fumigation treatment was more effective at inhibiting the growth rate of the pathogen. In addition, the phenolic content and phenylalanine ammonia lyase, ß-1,3-glucanase, chitinase, and peroxidase activities of tomatoes significantly increased on the seventh day due to the T. grandis oil treatment. The present study shows that these three oils with high extraction rates have preservation potential for cherry tomatoes. Among these three EOs, T. grandis oil can be used to further develop preservative products as a fumigant.


Asunto(s)
Botrytis , Aceites Volátiles , Solanum lycopersicum , Frutas/química , Fumigación , Aceites Volátiles/farmacología
7.
Plant Dis ; 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36372765

RESUMEN

Torreya grandis is an evergreen plant endemic of China and widely grown in Southern China. Its fruit is a precious nut in China, rich in vitamins and minerals, can be directly eaten, can also be used as medicinal plants with functions of lowering blood lipids and softening blood vessels (Wang 2022). From 2018 to 2020, typical root rot symptoms of Torreya grandis was found in plantations in Huangshan and surrounding areas of Huangshan, Anhui province, China. About 15 to 32% of root rot disease incidence was recorded at the plantation. Diseased plants were observed with symptoms such as yellow to brownish leaves without lesions and later drying, and rotten roots looked dark brown while the roots of heathy plants showed white, and eventually leading to the death of the diseased plant. The root rot symptomatic plants were collected in June of 2020. Tissues were cut to the length of 0.3 to 0.5 cm, then surface sterilized by 2% sodium hypochlorite for 2 min and 75% alcohol for 1 min, rinsed three times in sterile distilled water, and placed on potato dextrose agar (PDA) and incubated at 25℃ for 5 to 9 days. Eight isolates with similar morphology were isolated from single spores. On PDA, the isolates produced abundant aerial white mycelia with septation and turned violet to dark pink on the reverse side of the culture. Morphological characteristic was determined using a pure culture grown on synthetic low nutrient agar (SNA). Two types of conidia, microconidia and macroconidia, were observed on SNA. Macroconidia were long and slender, usually 3 to 5 septate, measuring 2.7 to 4.3 × 22.3 to 49.6 µm (n=30), and narrowed at the both ends. Microconidia were abundant, oval, clavate or ovate, zero to one septate and measured 1.6 to 3.9 × 4.4 to 13.0 µm (n=50). According to the culture and conidial characteristics, the isolates were tentatively identified as Fusarium species (Leslie and Summerell 2006). Four isolates were random selected for molecular identification. The general primers ITS1/ITS4 for internal transcribed spacer (ITS) (White et al. 1990), EF1/EF2 for translation elongation factor (TEF1) (O'Donnell et al. 1998), 5F2/7cR for the second largest subunit of RNA polymerase Ⅱ(RPB2) (O'Donnell et al., 2007), H3-1a/H3-1b for Histone H3 (Jacobs et al., 2010), F5/R8 for subunits 1 of DNA-directed RNA polymerase Ⅱ (RPB1) (O'Donnell et al. 2010) and MS3F/MS3R for mitochondrial small subunit (mtSSU) (Stenglein et al. 2010) were amplified, respectively. The products were sequenced and deposited in GenBank with accession numbers of MW350689, MW029444, ON077156, ON077158, ON077157, ON054432, respectively. Blast analysis showed 99.40 to 100% sequence homology with known F. fujikuroi isolates. A phylogenetic analysis based on the concatenated sequences clustered from the combined datasets (TEF1, RPB2, Histone H3, RPB1 and mtSSU) revealed the isolate most closely related to the F. fujikuroi (100% bootstrap). Fifteen 2-year-old healthy plants of Torreya grandis were selected for the pathogenicity test. A conidial suspension (1×106 conidia/ml) was prepared by collecting spores from 10-day-old cultures on PDA. The root of each plants inoculated with 200 ml of a 106 conidia/ml suspension, and the five control plants inoculated with sterilized water. The plants were incubated in green house with 25℃ (14 h light)/22℃ (10 h dark) at 85% humidity. Two weeks later, 100% of artificially inoculated plants showed the same symptoms similar to those observed in the plantation, like yellow leaves, dark brown and rotten roots, meanwhile, the roots of control plants displayed healthy. From symptomatic roots, the pathogen was reisolated which satisfying Koch's postulates. F. fujikuroi causes root rot of soybean and Reineckia carnea (Detranaltes et al. 2021, Sun et al. 2018).To the best of our knowledge, this is the first report of F. fujikuroi causing root rot of Torreya grandis in China.

8.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080335

RESUMEN

Torreya grandis is an important economic forestry product in China, whose seeds are often consumed as edible nuts, or used as raw materials for oil processing. To date, as an important by-product of Torreya grandis, comprehensive studies regarding the Torreya grandis seed coat phenolic composition are lacking, which greatly limits its in-depth use. Therefore, in the present study, the Torreya grandis seed coat was extracted by acid aqueous ethanol (TE), and NMR and UHPLC-MS were used to identify the major phenolics. Together with the already known phenolics including protocatechuic acid, catechin, epigallocatechin gallate, and epicatechin gallate, the unreported new compound 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid was discovered. The results of the antioxidant properties showed that both TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid exhibited strong ABTS, DPPH, and hydroxyl radical-scavenging activity, and significantly improved the O/W emulsion's oxidation stability. These results indicate that the TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid could possibly be used in the future to manufacture functional foods or bioactive ingredients. Moreover, further studies are also needed to evaluate the biological activity of TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid to increase the added value of Torreya grandis by-products.


Asunto(s)
Antioxidantes , Taxaceae , Antioxidantes/química , Etanol/análisis , Fenoles/análisis , Extractos Vegetales/química , Semillas/química , Taxaceae/química
9.
J Sci Food Agric ; 99(9): 4226-4234, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30790295

RESUMEN

BACKGROUND: Torreya grandis, a large evergreen coniferous tree with oil-rich nuts, undergoes a crucial ripening stage after harvest that results in oil accumulation, finally giving rise to the nut that is edible in roasted form. To understand lipid metabolism in T. grandis nuts during the post-harvest ripening period, the effects of low temperature on lipid content, fatty acid composition, lipid biosynthesis and degradation were investigated. RESULTS: The lipid content increased during ripening at room temperature and a low temperature slowed down this increase. Linoleic acid content increased at low temperature, which was accompanied by an increase in the microsomal oleate desaturase (FAD2) activity and FAD2 expression. Furthermore, a low temperature attenuated lipid peroxidation as indicated by lower contents of malondialdehyde, hydroperoxide and total free fatty acid in T. grandis nuts during the ripening stage, as well as the down-regulation of gene expression of lipid degradation-related enzymes such as phospholipase D and lipoxygenases. CONCLUSION: The findings of the present study indicate that a low temperature increased polyunsaturated fatty acid contents by increasing FAD2 biosynthesis and decreasing lipid peroxidation, thereby improving the oil yield in T. grandis nuts during the post-harvest ripening period. © 2019 Society of Chemical Industry.


Asunto(s)
Metabolismo de los Lípidos , Nueces/metabolismo , Taxaceae/crecimiento & desarrollo , Frío , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Lípidos/química , Nueces/química , Nueces/crecimiento & desarrollo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Proteínas de Plantas/metabolismo , Taxaceae/química , Taxaceae/enzimología , Taxaceae/metabolismo
10.
Plant Sci ; 348: 112227, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173887

RESUMEN

Torreya grandis, a dioecious Taxaceae species of significant economic value in southeast China, presents challenges for natural pollination due to asynchronous maturation of its sex organs and low pollen vitality. In order to enhance fertilization success through artificial pollination of T. grandis, this study investigated the optimal conditions for in vitro pollen germination and pollen tube growth of T. grandis. The optimal in vitro growth medium was found to contain 29 mM sucrose, 0.8 mM H3BO3, 0.72 mM CaCl2, and 0.32 mM MgSO4, supplemented with 4 µM NAA, 2 µM GA3, and 5 µM 2,4-D at pH=5.6. Under these conditions, we achieved a maximum pollen germination ratio of 69.99 ± 5.17 % and a pollen tube length of 34.38 ± 6.04 µm after 6 days germination at 28°C. FM4-64 dye and Mitotracker Red staining revealed highly dynamics of vesicles and mitochondria during germination, which were accumulated at the tip of pollen tube and exhibited biphasic movement patterns. The total number, motion rate, and movement velocity of vesicles as well as mitochondria showed an initially increase followed by a gradual decrease pattern. The presence of sucrose in the medium significantly increased the dynamics and metabolic activity of both vesicles and mitochondria, which may relate with higher pollen germination ratio and faster pollen tube growth compared to sucrose-depleted conditions. Thus, these findings shed light on the physiological characteristics of Torreya pollen germination and provide scientific information for improving Torreya fruit yield through artificial pollination.


Asunto(s)
Germinación , Tubo Polínico , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/metabolismo , Germinación/fisiología , Polen/crecimiento & desarrollo , Polen/fisiología , Polinización , Sacarosa/metabolismo
11.
Genes (Basel) ; 15(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540326

RESUMEN

Torreya grandis, an economically significant evergreen tree species exclusive to subtropical China, is highly valued for its seeds. However, the seed development process of T. grandis remains relatively unexplored. Given the pivotal role WRKY transcription factors (TFs) play in coordinating diverse cellular and biological activities, as well as crucial signaling pathways essential for plant growth and development, and the lack of comprehensive investigation into their specific functions in T. grandis, our study investigated its genome and successfully isolated 78 WRKY genes and categorized them into three distinct clades. A conserved motif analysis unveiled the presence of the characteristic WRKY domain in each identified TgWRKY protein. The examination of gene structures revealed variable numbers of introns (ranging from zero to eight) and exons (ranging from one to nine) among TgWRKY genes. A chromosomal distribution analysis demonstrated the presence of TgWRKY across eight chromosomes in T. grandis. Tissue-specific expression profiling unveiled distinctive patterns of these 78 TgWRKY genes across various tissues. Remarkably, a co-expression analysis integrating RNA-seq data and morphological assessments pinpointed the pronounced expression of TgWRKY25 during the developmental stages of T. grandis seeds. Moreover, a KEGG enrichment analysis, focusing on genes correlated with TgWRKY25 expression, suggested its potential involvement in processes such as protein processing in the endoplasmic reticulum, starch, and sucrose metabolism, thereby modulating seed development in T. grandis. These findings not only underscore the pivotal role of WRKY genes in T. grandis seed development but also pave the way for innovative breeding strategies.


Asunto(s)
Fitomejoramiento , Taxaceae , Perfilación de la Expresión Génica , Genes de Plantas , Semillas/genética , Semillas/química , Taxaceae/química , Taxaceae/genética
12.
Int J Biol Macromol ; 271(Pt 2): 132592, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820905

RESUMEN

Torreya grandis wax (TGW), a new nut wax and by-product of refined Torreya grandis oil, lacks sufficient research and application. In this study, the gelling behavior in diacylglycerol (DAG) and chemical compositions of TGW were investigated. Compared with four typical natural waxes, TGW exhibited the lowest critical gelling concentration (Cg, 1 %wt) in DAG. The results performed that TGW-DAG oleogels at Cg possessed the highest G'LVR and G″, highest critical stress, good thermal stability, moderate viscosity recovery, and osc. yields stress, indicating strong gel. The microstructure and correlation analysis revealed that excellent gelling behaviors of TGW-DAG oleogels were due to the solid three-dimensional network formed by rod-like TGW crystal, and the higher hydrocarbon compound (HC) content and HC/wax ester in TGW. Formulation optimization suggested that oleogel containing 3.2 % TGW and 1.0 % diosgenin (DSG) better mimicked the characteristics of shortening in terms of hardness, adhesiveness, spreadability. The bread prepared with TGW/DSG-DAG oleogel owned uniform and dense pores, the best moisture retention capability, and soft and firm taste, demonstrating that TGW/DSG-DAG oleogel was a good shortening substitute. Therefore, this study provides the systematically fundamental knowledge of TGW and develops DSG-TGW-DAG oleogels as promising shortening substitutions.


Asunto(s)
Diglicéridos , Geles , Compuestos Orgánicos , Ceras , Ceras/química , Diglicéridos/química , Compuestos Orgánicos/química , Geles/química , Viscosidad , Reología
13.
Plant Physiol Biochem ; 207: 108436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38367388

RESUMEN

Drought stress is a major abiotic stress which severely reduces the plant growth and limits agricultural productivity. Previous studies have demonstrated that lutein directly synthesized by the carotenoid epsilon-ring hydroxylase gene (LUT1) played crucial roles in regulating drought response. Notwithstanding the myriad studies on LUT1's response to drought stress in certain plant species such as Arabidopsis, the precise function mechanisms within tree species remain ambiguously understood. Our study reveals that under drought stress, TgLUT1, a novel LUT gene instrumental in ß-lutein biosynthesis, was markedly up-regulated in Torreya grandis. Subcellular localization assay indicated that TgLUT1 protein was localized to chloroplasts. Phenotypic analysis showed that overexpression of TgLUT1 enhanced the tolerance of tomato to drought stress. Overexpressing of TgLUT1 increased the values of maximal photochemical efficiency of photosystem II (Fv/Fm), net photosynthetic rate (Pn) and non-photochemical quenching (NPQ), and reduced the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA) content and electrolyte leakage percentage in response to drought stress. Furthermore, overexpression of TgLUT1 decreased the stomatal conductance to reduce the water loss rate exposed to drought stress. In addition, yeast one-hybrid assay, dual luciferase assay system and qRT-PCR results showed that TgWRKY10 down-regulated by drought stress inhibited the expression of TgLUT1 by directly binding to the TgLUT1 promoter. Collectively, our results show that TgWRKY10, down-regulated by drought stress, negatively regulates the expression of TgLUT1 to modulate the drought stress response. This study contributes to a more comprehensive understanding of LUT1's function in the stress responses of economically significant forest plants.


Asunto(s)
Sequías , Taxaceae , Peróxido de Hidrógeno/metabolismo , Luteína , Fotosíntesis , Estrés Fisiológico/genética , Taxaceae/genética , Taxaceae/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
14.
Phytochemistry ; 221: 114036, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387724

RESUMEN

Eight previously undescribed diterpenoids, along with eleven previously reported analogues, were obtained from the supercritical CO2 extracts of Torreya grandis aril. The structures of these compounds were elucidated based on HRESIMS, NMR, ECD, and single-crystal X-ray diffraction data. In the MTT assay, compound 18 exhibited significant inhibitory effects on two human colon cancer cell lines, HT-29 and HCT 116 cells, with IC50 values of 7.37 µM and 6.55 µM, respectively. It was found that compound 18 induced apoptosis and significantly inhibited the migration of HCT 116 colon cancer cells in a concentration-dependent manner.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Diterpenos , Taxaceae , Ácidos Triyodobenzoicos , Humanos , Antineoplásicos/farmacología , Diterpenos/farmacología , Taxaceae/química , Estructura Molecular
15.
Foods ; 13(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38540830

RESUMEN

The purpose of this study was to evaluate the efficacy of ethanol extracts from Torreya grandis seed (EST) as a functional food in hyperuricemia mice. We investigated EST by analyzing its chemical composition. Using a mouse model of hyperuricemia induced by potassium oxonate (PO), we evaluated the effects of EST on uric acid (UA) production, inflammation-related cytokines, and gut microbiota diversity. The primary constituents of EST consist of various flavonoids and phenolic compounds known for their antioxidant and anti-inflammatory properties in vitro. Notably, our findings demonstrate that EST significantly reduced UA levels in hyperuricemia mice by 71.9%, which is comparable to the effects observed with xanthine treatment. Moreover, EST exhibited an inhibitory effect on xanthine oxidase activity in mouse liver, with an IC50 value of 20.90 µg/mL (36%). EST also provided protective effects to the mouse kidneys by modulating oxidative stress and inflammation in damaged tissues, while also enhancing UA excretion. Finally, EST influenced the composition of the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Akkermansia muciniphila, Corynebacterium parvum, Enterorhabdus, Muribaculaceae, Marvinbryantia, and Blautia. In summary, our research unveils additional functions of Torreya grandis and offers new insights into the future of managing hyperuricemia.

16.
Huan Jing Ke Xue ; 45(9): 5441-5450, 2024 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-39323161

RESUMEN

Soil organic carbon (SOC) and soil total nitrogen (STN) serve as important indicators of the elemental balance within forest ecosystems reflecting soil fertility and quality. Accurate knowledge regarding the spatial variability of regional SOC, STN, and C∶N ratio and their influencing factors is of great significance for precise fertilization and soil health. In this study, a total of 117 topsoil samples (0-20 cm in depth) based on a 1 km×1 km grid were collected in the Torreya grandis cv. Merrillii plantation in Zhejiang Province. A combination of multi-dimensional statistical approaches (random forest model, structural equation model, redundancy analysis, and variation partitioning analysis) and diverse spatial analytical techniques (geostatistics, Moran's I index, etc.) were applied to reveal the spatial distributions and influencing factors of SOC, STN, and C∶N ratio in the Torreya. grandis cv. Merrillii region. The results showed that the average ω(SOC), ω(STN), and C∶N ratio were 17.63 g·kg-1, 1.48 g·kg-1, and 12.65, respectively, and their coefficients of variation were 68.08%, 67.41%, and 46.03%, respectively, indicating a moderate degree of variability. In general, the SOC, STN, and C∶N ratio of the Torreya grandis cv. Merrillii plantations were at an intermediate level in the national plantation. The semi-variance results showed that the nugget/sill values of SOC, STN, and C∶N ratio were 49.98%, 45.88%, and 49.93%, respectively, demonstrating a moderate level of spatial autocorrelation. The spatial distribution results showed that SOC, STN, and C∶N ratio decreased from northeast to southwest, with the majority of the region exhibiting above-medium fertility levels of SOC. The results of correlation analysis and redundancy analysis indicated that AN, AP, and AK were significantly correlated with both SOC, STN, and C∶N ratio (P<0.05). The results of random forest, structural equation model, and variation partitioning analysis evidenced that the main influencing factors of SOC and STN were soil-available nutrients (AN, AP, and AK). Therefore, our results could provide important insights for enhancing soil carbon and nitrogen pools in special plantations in Zhejiang Province, enhancing the capacity of plantations to adapt to regional climate change through ecological measures such as appropriate fertilization practices and strategic understory vegetation cultivation.

17.
Plants (Basel) ; 13(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339615

RESUMEN

Torreya grandis (T. grandis, Taxaceae) is a well-known nut tree species. Its fruit aril and leaves possess a unique aroma, making it an ideal natural raw material for extracting essential oils (EOs). This study aims to comprehensively compare the composition, biological activities, and pharmacological mechanism of EOs extracted from the arils (AEO) and leaves (LEO) of T. grandis. The results revealed that the chemical composition of the two EOs was highly consistent, with α-pinene and D-limonene as the main components. Both EOs significantly reduced cellular melanin production and inhibited tyrosinase activity in α-MSH-stimulated B16 cells (p < 0.05). AEO and LEO suppressed inflammatory responses in LPS-stimulated RAW 264.7 macrophages, significantly inhibiting cellular NO production and proinflammatory cytokines such as TNF-α and IL-6 (p < 0.05). A network pharmacology analysis reveals that AEO and LEO share similar molecular mechanisms and pharmacological pathways for treating skin pigmentation and inflammation. Regulating inflammatory cytokines may be a critical pathway for AEO and LEO in treating skin pigmentation. These findings suggest that AEO and LEO have potential for cosmetic applications. The leaves of T. grandis could be a valuable source of supplementary materials for producing T. grandis aril EO.

18.
Mol Nutr Food Res ; 68(4): e2300615, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38152983

RESUMEN

SCOPE: Torreya grandis kernel has traditionally been used to remove intestinal parasites and increases intestinal motility. However, the effect of Torreya grandis kernel oil (TKO) on constipation has not yet been investigated. Therefore, mouse model is used to investigate the effect of TKO on slow transit constipation (STC) and its possible mechanism. METHODS AND RESULTS: The effects of TKO on intestinal motility of STC mice are evaluated by fecal weight, fecal water content, colon length, defecation test, and intestinal propulsion test. The mechanism of TKO alleviating STC is explored by detecting biochemical analysis, histological analysis, western blot, qRT-PCR, immunohistochemistry, and gut microbiota analysis. The results reveal that TKO effectively promotes defecation and intestinal motility, increases the level of endothelin-1, and restores the histopathological morphology of the colon under LOP pretreatment. The expression levels of occludin, claudin-1, and zonula occludens-1 (ZO-1) mRNA and protein are up-regulated in mice receiving TKO treatment. The colonic 5-hydroxytryptamine 3R/4R (5-HT3R/5-HT4R) expressions are also increased by TKO supplementation. Additionally, TKO rescues LOP-caused disorders of the gut microbiota. CONCLUSION: Consumption of TKO is beneficial to STC recovery, and it can alleviate LOP-induced STC by up-regulating the colonic expressions of Occludin/Claudin-1/ZO-1 and 5-HT3R/5-HT4R.


Asunto(s)
Loperamida , Uniones Estrechas , Ratones , Animales , Loperamida/efectos adversos , Loperamida/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Ocludina/genética , Ocludina/metabolismo , Ratones Endogámicos BALB C , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo
19.
J Hazard Mater ; 445: 130647, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056011

RESUMEN

As a 2D nanomaterial, MXene (Ti3C2Tx) has shown enormous potential for use in fields such as biomedical and environmental pollution. However, the utilization of MXene materials in plants has received little attention thus far. The efficient use of MXene materials in agriculture and forestry is first highlighted in this study. Phenotypic and physiological analyses indicated that MXene application significantly enhanced the tolerance of Torreya grandis to Pb stress by reducing Pb accumulation. Furthermore, we illustrated two independent mechanisms of MXene material in reducing Pb accumulation in T. grandis: 1) MXene converted the available form of Pb into stable forms via its strong Pb adsorption ability, resulting in a decrease of the available form of Pb in soils, and 2) MXene application obviously increased the cell wall pectin content to restrict more Pb in the cell wall by regulating the expression of pectin synthesis/metabolism-related genes (TgPLL2, TgPLL11, TgPG5, TgPG30, TgGAUT3 and TgGAUT12) in T. grandis roots. Overall, this finding provides insight into the application of MXene material in modern agriculture and forestry, which will facilitate the rapid development of nanotechnology in sustainable agriculture and forestry.


Asunto(s)
Plomo , Taxaceae , Plomo/toxicidad , Titanio , Pectinas
20.
Int J Biol Macromol ; 253(Pt 2): 126702, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673161

RESUMEN

ß-Carotene functions in plant growth and development and plays an important role in resisting abiotic stress, such as drought and salt stress. The specific function and mechanism by which ß-carotene responds to waterlogging stress, however, remain elusive. In this study, we found that ß-carotene content and lycopene cyclase (TgLCYB1) expression, both in leaves and roots of Torreya grandis, were increased under waterlogging treatment. Subcellular localization assays indicated that TgLCYB1 was localized in the chloroplasts. Phenotypic, physiological, and metabolome analysis showed that overexpression of TgLCYB1 enhanced the tolerance of tomato plants to waterlogging stress. Furthermore, application of a LCYB enzyme inhibitor, 2-(4-chlorophenylthio)-triethylamine hydrochloride, markedly enhanced the sensitivity of T. grandis to waterlogging stress. In addition, yeast one-hybrid assay, the dual luciferase assay system, and real-time quantitative PCR indicated that waterlogging stress induced TgWRKY22 to increase TgLCYB1 expression by binding to the TgLCYB1 promoter. Collectively, our results indicated that TgWRKY22 positively regulated TgLCYB1 expression to improve the activities of antioxidant enzyme and increase the levels of some key metabolites, thereby relieving waterlogging-induced oxidative damage, and consequently modulating the waterlogging stress response. This study contributes to a more comprehensive understanding of carotenoid functions and the role LCYB genes play in plant stress response.


Asunto(s)
Taxaceae , beta Caroteno , Estrés Oxidativo , Estrés Fisiológico , Carotenoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA