Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(15): 4113-4127.e13, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876107

RESUMEN

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.


Asunto(s)
Interacciones Huésped-Patógeno , Humanos , Animales , Enfermedad de Lyme/microbiología , Enfermedades Transmitidas por Vectores , Interacciones Microbiota-Huesped , Borrelia burgdorferi/patogenicidad , Borrelia burgdorferi/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(15): e2310859121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527214

RESUMEN

Malaria is a disease of global significance. Ongoing changes to the earth's climate, antimalarial resistance, insecticide resistance, and socioeconomic decline test the resilience of malaria prevention programs. Museum insect specimens present an untapped resource for studying vector-borne pathogens, spurring the question: Do historical mosquito collections contain Plasmodium DNA, and, if so, can museum specimens be used to reconstruct the historical epidemiology of malaria? In this Perspective, we explore molecular techniques practical to pathogen prospecting, which, more broadly, we define as the science of screening entomological museum specimens for human, animal, or plant pathogens. Historical DNA and pathogen prospecting provide a means of describing the coevolution of human, vector, and parasite, informing the development of insecticides, diagnostics, therapeutics, and vaccines.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Museos , Anopheles/genética , Mosquitos Vectores , Malaria/epidemiología , Malaria/prevención & control , Resistencia a los Insecticidas , Insecticidas/farmacología , ADN , Control de Mosquitos
3.
Proc Natl Acad Sci U S A ; 119(11): e2115285119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35238677

RESUMEN

SignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors. Identification of key pathogens led to changes in national program surveillance. This study is a "real world" example of the use of mNGS surveillance of febrile individuals, executed in-country, to identify outbreaks of vector-borne, zoonotic, and other emerging pathogens in a resource-scarce setting.


Asunto(s)
Susceptibilidad a Enfermedades , Recursos en Salud , Metagenoma , Metagenómica/métodos , Vigilancia en Salud Pública , Asia Sudoriental/epidemiología , Cambodia/epidemiología , Femenino , Fiebre/epidemiología , Fiebre/etiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Estudios Seroepidemiológicos
4.
J Infect Dis ; 229(1): 4-6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38000901

RESUMEN

Bangladesh is currently experiencing the country's largest and deadliest dengue outbreak on record. This year's outbreak has been characterized by an early seasonal surge in cases, rapid geographic spread, and a high fatality rate. The alarming trends in dengue incidence and mortality this year is an urgent wake-up call for public health policymakers and researchers to pay closer attention to dengue dynamics in South Asia, to strengthen the surveillance system and diagnostic capabilities, and to develop tools and methods for guiding strategic resource allocation and control efforts.


Asunto(s)
Dengue , Humanos , Dengue/epidemiología , Dengue/diagnóstico , Bangladesh/epidemiología , Incidencia , Brotes de Enfermedades , Salud Pública
5.
J Clin Microbiol ; 62(6): e0010424, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38661386

RESUMEN

Leishmaniasis is a vector-borne disease caused by many Leishmania spp. which infect humans and other mammalian hosts. Leishmania infantum is the main agent of canine leishmaniasis (CanL) whose diagnosis is usually confirmed by serological and molecular tests. This study aimed to evaluate the clinical and analytical sensitivities of a lab-on-chip (LOC) real-time PCR applied on the portable Q3-Plus V2 platform (Q3 qPCR) in the detection of L. infantum. The Q3 qPCR performance was assessed by comparing the quantification cycle (Cq) values with those obtained using the qPCR run on a CFX96 Real-Time System (CFX96 qPCR). A total of 173 DNA samples (extracted from bone marrow, lymph node, blood, buffy coat, conjunctival swab, and skin) as well as 93 non-extracted samples (NES) (bone marrow, lymph node, blood, and buffy coat) collected from dogs were tested with both systems. Serial dilutions of each representative DNA and NES sample were used to assess the analytical sensitivity of the Q3 qPCR system. Overlapping Cq values were obtained with the Q3 qPCR and CFX96 qPCR, both using DNA extracted from L. infantum promastigotes (limit of detection, <1 promastigote per milliliter) and from biological samples as well as with NES. However, the Q3 qPCR system showed a higher sensitivity in detecting L. infantum in NES as compared with the CFX96 qPCR. Our data indicate that the Q3 qPCR system could be a reliable tool for detecting L. infantum DNA in biological samples, bypassing the DNA extraction step, which represents an advance in the point-of-care diagnostic of CanL.


Asunto(s)
Enfermedades de los Perros , Leishmania infantum , Leishmaniasis Visceral , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Perros , Animales , Leishmania infantum/genética , Leishmania infantum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/parasitología , Dispositivos Laboratorio en un Chip , Técnicas de Diagnóstico Molecular/métodos , ADN Protozoario/genética
6.
Appl Environ Microbiol ; 90(7): e0082224, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38899883

RESUMEN

Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.


Asunto(s)
Borrelia burgdorferi , Reservorios de Enfermedades , Enfermedad de Lyme , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Peromyscus , Animales , Peromyscus/microbiología , Ratones , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Enfermedad de Lyme/veterinaria , Borrelia burgdorferi/fisiología , Borrelia burgdorferi/genética , Reservorios de Enfermedades/microbiología , Modelos Animales de Enfermedad , Ixodes/microbiología
7.
BMC Microbiol ; 24(1): 28, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245715

RESUMEN

BACKGROUND: Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. 'hongkongensis'. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies' (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott's test (MKT). RESULTS: We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. 'hongkongensis'. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. CONCLUSIONS: Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT' small and portable MinION™ means that such methods could be deployed for field use.


Asunto(s)
Coinfección , Filariasis , Filarioidea , Humanos , Animales , Perros , Filarioidea/genética , Filariasis/diagnóstico , Filariasis/veterinaria , Filariasis/parasitología , Brugia/genética , Wuchereria bancrofti/genética , Mamíferos
8.
Glob Chang Biol ; 30(1): e17041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273521

RESUMEN

Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/fisiología , Aedes/fisiología , Temperatura
9.
Glob Chang Biol ; 30(8): e17434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105284

RESUMEN

The freshwater snail Bulinus truncatus is an important intermediate host for trematode parasites causing urogenital schistosomiasis, a tropical disease affecting over 150 million people. Despite its medical importance, uncertainty remains about its global distribution and the potential impacts of climate change on its future spread. Here, we investigate the distribution of B. truncatus, combining the outputs of correlative and mechanistic modelling methods to fully capitalize on both experimental and occurrence data of the species and to create a more reliable distribution forecast than ever constructed. We constructed ensemble correlative species distribution models using 273 occurrence points collected from different sources and a combination of climatic and (bio)physical environmental variables. Additionally, a mechanistic thermal suitability model was constructed, parameterized by recent life-history data obtained through extensive lab-based snail-temperature experiments and supplemented with an extensive literature review. Our findings reveal that the current suitable habitat for B. truncatus encompasses the Sahel region, the Middle East, and the Mediterranean segment of Africa, stretching from Southern Europe to Mozambique. Regions identified as suitable by both methods generally coincide with areas exhibiting high urogenital schistosomiasis prevalence. Model projections into the future suggest an overall net increase in suitable area of up to 17%. New suitable habitat is in Southern Europe, the Middle East, and large parts of Central Africa, while suitable habitat will be lost in the Sahel region. The change in snail habitat suitability may substantially increase the risk of urogenital schistosomiasis transmission in parts of Africa and Southern Europe while reducing it in the Sahel region.


Asunto(s)
Cambio Climático , Esquistosomiasis Urinaria , Animales , Europa (Continente) , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/epidemiología , África/epidemiología , Bulinus/parasitología , Ecosistema , Humanos , Caracoles/parasitología , Caracoles/fisiología , Distribución Animal , Modelos Teóricos
10.
Malar J ; 23(1): 258, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182127

RESUMEN

BACKGROUND: Despite the successful efforts in controlling malaria in Vietnam, the disease remains a significant health concern, particularly in Central Vietnam. This study aimed to assess correlations between environmental, climatic, and socio-economic factors in the district with malaria cases. METHODS: The study was conducted in 15 provinces in Central Vietnam from January 2018 to December 2022. Monthly malaria cases were obtained from the Institute of Malariology, Parasitology, and Entomology Quy Nhon, Vietnam. Environmental, climatic, and socio-economic data were retrieved using a Google Earth Engine script. A multivariable Zero-inflated Poisson regression was undertaken using a Bayesian framework with spatial and spatiotemporal random effects with a conditional autoregressive prior structure. The posterior random effects were estimated using Bayesian Markov Chain Monte Carlo simulation with Gibbs sampling. RESULTS: There was a total of 5,985 Plasmodium falciparum and 2,623 Plasmodium vivax cases during the study period. Plasmodium falciparum risk increased by five times (95% credible interval [CrI] 4.37, 6.74) for each 1-unit increase of normalized difference vegetation index (NDVI) without lag and by 8% (95% CrI 7%, 9%) for every 1ºC increase in maximum temperature (TMAX) at a 6-month lag. While a decrease in risk of 1% (95% CrI 0%, 1%) for a 1 mm increase in precipitation with a 6-month lag was observed. A 1-unit increase in NDVI at a 1-month lag was associated with a four-fold increase (95% CrI 2.95, 4.90) in risk of P. vivax. In addition, the risk increased by 6% (95% CrI 5%, 7%) and 3% (95% CrI 1%, 5%) for each 1ºC increase in land surface temperature during daytime with a 6-month lag and TMAX at a 4-month lag, respectively. Spatial analysis showed a higher mean malaria risk of both species in the Central Highlands and southeast parts of Central Vietnam and a lower risk in the northern and north-western areas. CONCLUSION: Identification of environmental, climatic, and socio-economic risk factors and spatial malaria clusters are crucial for designing adaptive strategies to maximize the impact of limited public health resources toward eliminating malaria in Vietnam.


Asunto(s)
Teorema de Bayes , Clima , Malaria Falciparum , Malaria Vivax , Factores Socioeconómicos , Análisis Espacio-Temporal , Vietnam/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Humanos , Ambiente , Plasmodium falciparum , Plasmodium vivax/fisiología
11.
Microb Ecol ; 87(1): 64, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691215

RESUMEN

Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.


Asunto(s)
Bacterias , Culicidae , Microbiota , Wolbachia , Rwanda , Animales , Culicidae/microbiología , Wolbachia/genética , Wolbachia/aislamiento & purificación , Wolbachia/clasificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Mosquitos Vectores/microbiología , Femenino , Masculino , ARN Ribosómico 16S/genética , Serratia/genética , Serratia/aislamiento & purificación , Serratia/clasificación , Complejo IV de Transporte de Electrones/genética , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Med Vet Entomol ; 38(1): 108-111, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37715451

RESUMEN

Psathyromyia (Psathyromyia) shannoni sensu stricto (Dyar) is a vector of Leishmania parasite and the second sandfly of medical importance with a wide geographical but discontinuous distribution in America. Preliminary genetic structure analysis using a mitochondrial marker shows that the species integrated by at least four lineages could be the result of ecological adaptations to different environmental scenarios, but this hypothesis had never been proven. The aim of the present study was to analyse whether the genetic structure that detected Pa. shannoni ss. is associated with divergence or conservatism niche. Using Ecological Niche Models (ENMs) theory, we estimated the potential distribution for each genetic lineage, and then, we evaluated the equivalency niche for assessing whether climatic niche was more different than expected. The ENMs identify different suitable distribution areas but the same climatic or ecological conditions for the genetic lineages of Pa. shannoni (conservatism niche). Our findings allow us to speculate that other potential processes or events could be related to the genetic differentiation of Pa. shannoni. These studies are important because they allow us to identify the factors that could restrict the potential distribution of the different lineages whose vectorial competence is still unknown.


Asunto(s)
Leishmania , Psychodidae , Animales , Psychodidae/genética , Psychodidae/parasitología , Ecosistema , Modelos Teóricos , Geografía , Filogenia
13.
Med Vet Entomol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175110

RESUMEN

Research into various bacterial pathogens that can be transmitted between different animals and may have zoonotic potential has led to the discovery of different strains of Bartonella sp. in bats and their associated ectoparasites. Despite their enormous species diversity, only a few studies have focussed on the detection of bacterial pathogens in insectivorous bats of boreal forests and their associated Macronyssidae and Spinturnicidae mites. We collected and molecularly analysed mite samples from forest-dwelling bat species distributed all along the boreal belt of the Palearctic, from Central Europe to Far East. Ectoparasitic mites were pooled for DNA extraction and DNA amplification polymerase chain reaction (PCRs) were conducted to detect the presence of various bacterial (Anaplasmataceae, Bartonella sp., Rickettsia sp., Mycoplasma sp.) and protozoal (Hepatozoon sp.) pathogens. Bartonella sp. DNA was detected in four different mite species (Macronyssidae: Steatonyssus periblepharus and Spinturnicidae: Spinturnix acuminata, Sp. myoti and Sp. mystacinus), with different prevalences of the targeted gene (gltA, 16-23S ribosomal RNA intergenic spacer and ftsZ). Larger pools (>5 samples pooled) were more likely to harbour Bartonella sp. DNA, than smaller ones. In addition, cave-dwelling bat hosts and host generalist mite species are more associated with Bartonella spp. presence. Spinturnicidae mites may transmit several distinct Bartonella strains, which cluster phylogenetically close to Bartonella species known to cause diseases in humans and livestock. Mites with ubiquitous presence may facilitate the long-term maintenance (and even local recurrence) of Bartonella-infestations inside local bat populations, thus acting as continuous reservoirs for Bartonella spp in bats.

14.
Med Vet Entomol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150734

RESUMEN

Investigations of host feeding behaviour in haematophagous insects are critical to assess transmission routes of vector-borne diseases. Understanding if a certain species has ornithophilic or mammalophilic feeding behaviour can facilitate future studies focused on pathogens transmission to and from certain host species. Culicoides Latreille (Diptera: Ceratopogonidae) are vectors of several pathogens, which include arboviruses, bacteria and parasites to a considerable diversity of vertebrate hosts. However, most of the studies focused on feeding habits target Culicoides species that could transmit the Bluetongue virus, consequently with a mammalophilic feeding behaviour, leaving aside the Culicoides species that are involved in the transmission of vector-borne parasites to birds, such as Haemoproteus Kruse (Haemosporida: Haemoproteidae). This study aimed to investigate the source of blood meals of wild-caught Culicoides using molecular-based methods and to correlate our findings with the reports of Haemoproteus parasites in Culicoides species. Engorged Culicoides females were collected using ultraviolet (UV)-light traps at seven different localities in Lithuania in 2021-2023. Biting midges were dissected, and the abdomens of engorged females were used for molecular investigation of the blood meal source. A polymerase chain reaction (PCR) protocol that amplifies a fragment of the Cytochrome B gene of vertebrates was used. Obtained sequences were compared to available information in GenBank database to confirm the source of the blood meal. In total, 258 engorged Culicoides females, representing nine different species, were analysed. The source of blood meal was identified in 29.1% of them with most of the insects having fed on birds (74.7%) and the remaining on mammals (25.3%). Culicoides segnis Campbell, Pelham-Clinton was the only species to feed exclusively on birds; Culicoides from the Obsoletus group, C. pallidicornis Kieffer and C. punctatus Latreille were found to feed exclusively on mammals; C. festivipennis Kieffer, C. kibunensis Tokunaga and C. pictipennis Staeger had an opportunistic feeding behaviour, with the first two preferably feeding on birds. Due to their feeding behaviour and the presence of Haemoproteus parasites reported in the literature, C. festivipennis, C. kibunensis, C. pictipennis, and C. segnis play an important role in the transmission of those avian vector-borne parasite in the wild. These Culicoides species were already confirmed as being able to support the development of several Haemoproteus species and lineages. Future studies focused on understanding the epidemiology of avian pathogens transmitted by Culicoides should target these species.

15.
J Math Biol ; 88(2): 22, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294559

RESUMEN

We develop a multi-group and multi-patch model to study the effects of population dispersal on the spatial spread of vector-borne diseases across a heterogeneous environment. The movement of host and/or vector is described by Lagrangian approach in which the origin or identity of each individual stays unchanged regardless of movement. The basic reproduction number [Formula: see text] of the model is defined and the strong connectivity of the host-vector network is succinctly characterized by the residence times matrices of hosts and vectors. Furthermore, the definition and criterion of the strong connectivity of general infectious disease networks are given and applied to establish the global stability of the disease-free equilibrium. The global dynamics of the model system are shown to be entirely determined by its basic reproduction number. We then obtain several biologically meaningful upper and lower bounds on the basic reproduction number which are independent or dependent of the residence times matrices. In particular, the heterogeneous mixing of hosts and vectors in a homogeneous environment always increases the basic reproduction number. There is a substantial difference on the upper bound of [Formula: see text] between Lagrangian and Eulerian modeling approaches. When only host movement between two patches is concerned, the subdivision of hosts (more host groups) can lead to a larger basic reproduction number. In addition, we numerically investigate the dependence of the basic reproduction number and the total number of infected hosts on the residence times matrix of hosts, and compare the impact of different vector control strategies on disease transmission.


Asunto(s)
Enfermedades Transmitidas por Vectores , Humanos , Enfermedades Transmitidas por Vectores/epidemiología , Número Básico de Reproducción , Movimiento
16.
J Math Biol ; 89(2): 16, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890206

RESUMEN

In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, R 0 , which completely determines the global dynamics of the model system. Namely, if R 0 ≤ 1 , then the disease-free equilibrium is globally asymptotically stable, and if R 0 > 1 , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, R 0 can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.


Asunto(s)
Número Básico de Reproducción , Simulación por Computador , Conceptos Matemáticos , Modelos Biológicos , Enfermedades Transmitidas por Vectores , Número Básico de Reproducción/estadística & datos numéricos , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Humanos , Animales , Vectores de Enfermedades , Modelos Epidemiológicos
17.
Am J Emerg Med ; 82: 82-87, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820810

RESUMEN

Dengue is an arbovirus transmitted by the Aedes spp. mosquito. Approximately 390 million infections occur annually per World Health Organization estimates, with significant increases in infections throughout the last decade. The disease is endemic in warmer climates throughout the world, though cases may also be imported to non-endemic regions by returning travelers. Patients experience a wide variety of symptoms ranging from asymptomatic infection to severe disease requiring critical care. Emergency clinicians should consider the diagnosis of dengue in patients from endemic areas presenting with a flu-like illness, rash, and evidence of bleeding.


Asunto(s)
Dengue , Humanos , Dengue/diagnóstico , Dengue/terapia , Dengue/epidemiología , Servicio de Urgencia en Hospital
18.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155112

RESUMEN

Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.


Asunto(s)
Aedes/genética , Dengue/parasitología , Ecdisterona/farmacología , MicroARNs/genética , Mosquitos Vectores/genética , Receptores de Esteroides/metabolismo , Aedes/efectos de los fármacos , Animales , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Conducta Alimentaria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , MicroARNs/metabolismo , Mosquitos Vectores/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Óvulo/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética
19.
Ecotoxicol Environ Saf ; 283: 116780, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39126816

RESUMEN

Artificial light at night (ALAN) is a common form of light pollution worldwide, and the intensity, timing, duration, and wavelength of light exposure can affect biological rhythms, which can lead to metabolic, reproductive, and immune dysfunctions and consequently, host-pathogen interactions. Insect vector-borne diseases are a global problem that needs to be addressed, and ALAN plays an important role in disease transmission by affecting the habits and physiological functions of vector organisms. In this work, we describe the mechanisms by which ALAN affects host physiology and biochemistry, host-parasite interactions, and vector-borne viruses and propose preventive measures for related infectious diseases to minimize the effects of artificial light on vector-borne diseases.


Asunto(s)
Luz , Enfermedades Transmitidas por Vectores , Enfermedades Transmitidas por Vectores/transmisión , Animales , Luz/efectos adversos , Insectos Vectores , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338961

RESUMEN

Aedes aegypti is a major vector that transmits arboviruses through the saliva injected into the host. Salivary proteins help in uninterrupted blood intake and enhance the transmission of pathogens. We studied Niemann-Pick Type C2 (NPC2) proteins, a superfamily of saliva proteins that play an important role in arbovirus infections. In vertebrates, a single conserved gene encodes for the NPC2 protein that functions in cholesterol trafficking. Arthropods, in contrast, have several genes that encode divergent NPC2 proteins. We compared the sequences of 20 A. aegypti NPC2 proteins to the cholesterol-binding residues of human and bovine, and fatty-acid-binding residues of ant NPC2 protein. We identified four mosquito NPC2 proteins as potential sterol-binding proteins. Two of these proteins (AAEL006854 and/or AAEL020314) may play a key role in ecdysteroid biosynthesis and moulting. We also identified one mosquito NPC2 protein as a potential fatty-acid-binding protein. Through molecular modelling, we predicted the structures of the potential sterol- and fatty-acid-binding proteins and compared them to the reference proteins.


Asunto(s)
Aedes , Animales , Bovinos , Humanos , Aedes/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte Vesicular , Mosquitos Vectores , Colesterol/metabolismo , Esteroles/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA