Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(7): 1827-1841.e17, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550786

RESUMEN

Newborn mice emit signals that promote parenting from mothers and fathers but trigger aggressive responses from virgin males. Although pup-directed attacks by males require vomeronasal function, the specific infant cues that elicit this behavior are unknown. We developed a behavioral paradigm based on reconstituted pup cues and showed that discrete infant morphological features combined with salivary chemosignals elicit robust male aggression. Seven vomeronasal receptors were identified based on infant-mediated activity, and the involvement of two receptors, Vmn2r65 and Vmn2r88, in infant-directed aggression was demonstrated by genetic deletion. Using the activation of these receptors as readouts for biochemical fractionation, we isolated two pheromonal compounds, the submandibular gland protein C and hemoglobins. Unexpectedly, none of the identified vomeronasal receptors and associated cues were specific to pups. Thus, infant-mediated aggression by virgin males relies on the recognition of pup's physical traits in addition to parental and infant chemical cues.


Asunto(s)
Agresión , Órgano Vomeronasal/metabolismo , Animales , Animales Recién Nacidos , Eliminación de Gen , Masculino , Ratones , Ratones Mutantes
2.
Cell ; 171(5): 1176-1190.e17, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29107332

RESUMEN

The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas/citología , Vigilia , Amígdala del Cerebelo/citología , Animales , Conducta Animal , Señales (Psicología) , Endoscopía/métodos , Femenino , Masculino , Ratones , Microscopía/métodos , Oxitocina/fisiología , Caracteres Sexuales , Conducta Sexual Animal , Conducta Social
3.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38649162

RESUMEN

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Receptores Odorantes , Roedores , Órgano Vomeronasal , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Roedores/genética , Olfato/genética , Gusto/genética , Órgano Vomeronasal/metabolismo
4.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781337

RESUMEN

The ability of terrestrial vertebrates to find food and mating partners, and to avoid predators, relies on the detection of chemosensory information. Semiochemicals responsible for social and sexual behaviors are detected by chemosensory neurons of the vomeronasal organ (VNO), which transmits information to the accessory olfactory bulb. The vomeronasal sensory epithelium of most mammalian species contains a uniform vomeronasal system; however, rodents and marsupials have developed a more complex binary vomeronasal system, containing vomeronasal sensory neurons (VSNs) expressing receptors of either the V1R or V2R family. In rodents, V1R/apical and V2R/basal VSNs originate from a common pool of progenitors. Using single cell RNA-sequencing, we identified differential expression of Notch1 receptor and Dll4 ligand between the neuronal precursors at the VSN differentiation dichotomy. Our experiments show that Notch signaling is required for effective differentiation of V2R/basal VSNs. In fact, Notch1 loss of function in neuronal progenitors diverts them to the V1R/apical fate, whereas Notch1 gain of function redirects precursors to V2R/basal. Our results indicate that Notch signaling plays a pivotal role in triggering the binary differentiation dichotomy in the VNO of rodents.


Asunto(s)
Roedores , Órgano Vomeronasal , Animales , Diferenciación Celular/genética , Bulbo Olfatorio/metabolismo , Células Receptoras Sensoriales/metabolismo , Órgano Vomeronasal/metabolismo
5.
Genesis ; 62(2): e23593, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38562011

RESUMEN

The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/genética , Regulación de la Expresión Génica , Epigénesis Genética , Mamíferos
6.
Genesis ; 62(2): e23597, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38590121

RESUMEN

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Asunto(s)
Bulbo Olfatorio , Órgano Vomeronasal , Ratones , Animales , Bulbo Olfatorio/fisiología , Células Receptoras Sensoriales/metabolismo , Órgano Vomeronasal/metabolismo
7.
Genesis ; 62(2): e23596, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38665067

RESUMEN

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Asunto(s)
Órgano Vomeronasal , Órgano Vomeronasal/metabolismo , Órgano Vomeronasal/citología , Animales , Ratones , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/citología , Queratina-15/metabolismo , Queratina-15/genética , Queratina-5/metabolismo , Queratina-5/genética , Queratina-14/metabolismo , Queratina-14/genética , Transactivadores/genética , Transactivadores/metabolismo
8.
J Neurophysiol ; 131(3): 455-471, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38264787

RESUMEN

Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.


Asunto(s)
Neuronas Receptoras Olfatorias , Órgano Vomeronasal , Neuronas Receptoras Olfatorias/fisiología , Potenciales de Acción , Canales Iónicos/metabolismo , Feromonas/metabolismo , Órgano Vomeronasal/metabolismo
9.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36971115

RESUMEN

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks. The number of putative OR, TAAR, and V1R/ORA receptors is very low and stable, whereas the number of putative V2R/OlfC receptors is higher and much more dynamic. In the catshark Scyliorhinus canicula, we show that many V2R/OlfC receptors are expressed in the olfactory epithelium in the sparsely distributed pattern characteristic for olfactory receptors. In contrast, the other three vertebrate olfactory receptor families are either not expressed (OR) or only represented with a single receptor (V1R/ORA and TAAR). The complete overlap of markers of microvillous olfactory sensory neurons with pan-neuronal marker HuC in the olfactory organ suggests the same cell-type specificity of V2R/OlfC expression as for bony fishes, that is, in microvillous neurons. The relatively low number of olfactory receptors in cartilaginous fishes compared with bony fishes could be the result of an ancient and constant selection in favor of a high olfactory sensitivity at the expense of a high discrimination capability.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Tiburones , Órgano Vomeronasal , Animales , Receptores Odorantes/metabolismo , Olfato/fisiología , Órgano Vomeronasal/metabolismo , Tiburones/genética , Tiburones/metabolismo , Filogenia , Vertebrados/genética , Peces/genética
10.
Cell Tissue Res ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347998

RESUMEN

The olfactory organ of tetrapods, with few exceptions, comprises the main and accessory organs: olfactory epithelium (OE) and vomeronasal organ (VNO). Unlike tetrapods, teleost fish lack a VNO. However, lungfish, a type of sarcopterygian fish closely related to tetrapods, possesses a lamellar OE similar to the OE of teleosts and a recess epithelium (RecE) resembling the amphibian VNO. The RecE has been hypothesized as a primordial VNO. Olfactory receptors in tetrapods are distinctively expressed in the OE and VNO. For instance, type 2 vomeronasal receptors (V2Rs) in Xenopus are categorized into those exclusively expressed in the OE and those solely expressed in the VNO. It remains unclear whether V2Rs are differentially expressed between the lamellar OE and RecE in lungfish. This study investigated V2R expression in the lamellar OE and RecE of the African lungfish, Protopterus annectens. P. annectens V2Rs were categorized into three groups: those exclusively expressed in the lamellar OE, those exclusively expressed in the RecE, and those expressed in both the lamellar OE and RecE. V2Rs exclusively expressed in the RecE and those expressed in both the lamellar OE and RecE formed a distinct clade in the phylogenetic tree, whereas others were solely expressed in the lamellar OE. These findings suggest that lungfish V2R expression represents an intermediate stage toward complete segregation between V2Rs expressed in the OE and those expressed in the VNO.

11.
J Anat ; 245(1): 109-136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366249

RESUMEN

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Asunto(s)
Órgano Vomeronasal , Lobos , Animales , Órgano Vomeronasal/fisiología , Lobos/fisiología , Masculino , Feromonas/metabolismo , Femenino , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/anatomía & histología , Perros , Inmunohistoquímica
12.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36599327

RESUMEN

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Asunto(s)
Órgano Vomeronasal , Masculino , Humanos , Caballos , Animales , Órgano Vomeronasal/metabolismo , Antígeno Prostático Específico/metabolismo , Epitelio/metabolismo , Lectinas/metabolismo , Glicoconjugados/análisis , Glicoconjugados/metabolismo
13.
BMC Biol ; 21(1): 152, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37424020

RESUMEN

BACKGROUND: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS: We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS: Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.


Asunto(s)
Órgano Vomeronasal , Ratones , Animales , Órgano Vomeronasal/fisiología , Lipopolisacáridos , Encéfalo , Células Receptoras Sensoriales , Inflamación
14.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000398

RESUMEN

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Asunto(s)
Inmunohistoquímica , Órgano Vomeronasal , Animales , Órgano Vomeronasal/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Zorros/genética , Zorros/metabolismo , Ratones , Lobos/genética , Lobos/metabolismo , Perros , Canidae/genética
15.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341026

RESUMEN

The vomeronasal organ (VNO) contains two main types of vomeronasal sensory neurons (VSNs) that express distinct vomeronasal receptor (VR) genes and localize to specific regions of the neuroepithelium. Morphogenic signals are crucial in defining neuronal identity and network formation; however, if and what signals control maturation and homeostasis of VSNs is largely unexplored. Here, we found transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) signal transduction in postnatal mice, with BMP signaling being restricted to basal VSNs and at the marginal zones of the VNO: the site of neurogenesis. Using different Smad4 conditional knockout mouse models, we disrupted canonical TGFß/BMP signaling in either maturing basal VSNs (bVSNs) or all mature VSNs. Smad4 loss of function in immature bVSNs compromises dendritic knob formation, pheromone induced activation, correct glomeruli formation in the accessory olfactory bulb (AOB) and survival. However, Smad4 loss of function in all mature VSNs only compromises correct glomeruli formation in the posterior AOB. Our results indicate that Smad4-mediated signaling drives the functional maturation and connectivity of basal VSNs.


Asunto(s)
Axones/metabolismo , Morfogénesis , Bulbo Olfatorio/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteína Smad4/metabolismo , Órgano Vomeronasal/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Dendritas/metabolismo , Proteína GAP-43/metabolismo , Eliminación de Gen , Integrasas/metabolismo , Ratones Noqueados , Odorantes , Terminales Presinápticos/metabolismo , Transducción de Señal , Transcriptoma/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Cell Tissue Res ; 393(2): 253-264, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37266727

RESUMEN

The olfactory organ of turtles consists of an upper chamber epithelium (UCE) with associated glands, and a lower chamber epithelium (LCE) devoid of glands. The UCE and LCE are referred to as the air-nose and the water-nose, respectively, because the UCE is thought to detect airborne odorants, while the LCE detects waterborne odorants. However, it is not clear how the two are used in the olfactory organ. Odorant receptors (ORs) are the major olfactory receptors in turtles; they are classified as class I and II ORs, distinguished by their primary structure. Class I ORs are suggested to be receptive to water-soluble ligands and class II ORs to volatile ligands. This study analyzed the expression of class I and II ORs in hatchlings of the green sea turtle, Chelonia mydas, through in situ hybridization, to determine the localization of OR-expressing cells in the olfactory organ. Class I OR-expressing cells were distributed mainly in the LCE, implying that the LCE is receptive to waterborne odorants. Class II OR-expressing cells were distributed in both the UCE and LCE, implying that the entire olfactory organ is receptive to airborne odorants. The widespread expression of class II ORs may increase opportunities for sea turtles to sense airborne odorants.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Tortugas , Animales , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligandos , Neuronas Receptoras Olfatorias/metabolismo , Olfato , Agua , Mucosa Olfatoria/metabolismo
17.
J Anat ; 243(3): 486-503, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37042468

RESUMEN

Sea turtles use olfaction to detect volatile and water-soluble substances. The nasal cavity of green turtles (Chelonia mydas) comprises morphologically defined the anterodorsal, anteroventral, and posterodorsal diverticula, as well as a single posteroventral fossa. Here, we detailed the histological features of the nasal cavity of a mature female green turtle. The posterodorsal diverticulum contained spongy-like venous sinuses and a wave-shaped sensory epithelium that favored ventilation. Secretory structures that were significant in sensory and non-sensory epithelia were probably involved in protection against seawater. These findings suggested that green turtles efficiently intake airborne substances and dissolve water-soluble substances in mucous, while suppressing the effects of salts. In addition, positive staining of Gαs/olf that couples with olfactory, but not vomeronasal, receptors was predominant in all three types of sensory epithelium in the nasal cavity. Both of airborne and water-soluble odorants seemed to be detected in cells expressing Gαolf and olfactory receptors.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Tortugas , Animales , Femenino , Cavidad Nasal , Tortugas/anatomía & histología , Epitelio
18.
Artículo en Inglés | MEDLINE | ID: mdl-37690081

RESUMEN

In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.

19.
Mol Ther ; 30(1): 448-467, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34111560

RESUMEN

Cisplatin resistance is a major therapeutic challenge in advanced head and neck squamous cell carcinoma (HNSCC). Here, we aimed to investigate the key signaling pathway for cisplatin resistance in HNSCC cells. Vomeronasal type-1 receptor 5 (VN1R5) was identified as a cisplatin resistance-related protein and was highly expressed in cisplatin-resistant HNSCC cells and tissues. The long noncoding RNA (lncRNA) lnc-POP1-1 was confirmed to be a downstream target induced by VN1R5. VN1R5 transcriptionally regulated lnc-POP1-1 expression by activating the specificity protein 1 (Sp1) transcription factor via the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. VN1R5 promoted cisplatin resistance in HNSCC cells in a lnc-POP1-1-dependent manner. Mechanistically, lnc-POP1-1 bound to the minichromosome maintenance deficient 5 (MCM5) protein directly and decelerated MCM5 degradation by inhibiting ubiquitination of the MCM5 protein, which facilitated the repair of DNA damage caused by cisplatin. In summary, we identified the cisplatin resistance-related protein VN1R5 and its downstream target lnc-POP1-1. Upon upregulation by VN1R5, lnc-POP1-1 promotes DNA repair in HNSCC cells through interaction with MCM5 and deceleration of its degradation.


Asunto(s)
Neoplasias de Cabeza y Cuello , ARN Largo no Codificante , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , ARN Largo no Codificante/genética , Ribonucleoproteínas , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
20.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445898

RESUMEN

In numerous animals, one essential chemosensory organ that detects chemical signals is the vomeronasal organ (VNO), which is involved in species-specific behaviors, including social and sexual behaviors. The purpose of this study is to investigate the mechanism underlying the processing of chemosensory cues in semi-aquatic mammals using muskrats as the animal model. Muskrat (Ondatra zibethicus) has a sensitive VNO system that activates seasonal breeding behaviors through receiving specific substances, including pheromones and hormones. Vomeronasal organ receptor type 1 (V1R) and type 2 (V2R) and estrogen receptor α and ß (ERα and ERß) were found in sensory epithelial cells, non-sensory epithelial cells and lamina propria cells of the female muskrats' VNO. V2R and ERα mRNA levels in the VNO during the breeding period declined sharply, in comparison to those during the non-breeding period, while V1R and ERß mRNA levels were detected reversely. Additionally, transcriptomic study in the VNO identified that differently expressed genes might be related to estrogen signal and metabolic pathways. These findings suggested that the seasonal structural and functional changes in the VNO of female muskrats with different reproductive status and estrogen was regulated through binding to ERα and ERß in the female muskrats' VNO.


Asunto(s)
Receptor alfa de Estrógeno , Órgano Vomeronasal , Animales , Femenino , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Señales (Psicología) , Mamíferos/metabolismo , Estrógenos/metabolismo , Órgano Vomeronasal/metabolismo , Arvicolinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA