Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 191: 106406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199273

RESUMEN

BACKGROUND: Parkinson's disease (PD) patients exhibit an imbalance between neuronal activity and perfusion, referred to as abnormal neurovascular coupling (NVC). Nevertheless, the underlying molecular mechanism and how levodopa, the standard treatment in PD, regulates NVC is largely unknown. MATERIAL AND METHODS: A total of 52 drug-naïve PD patients and 49 normal controls (NCs) were enrolled. NVC was characterized in vivo by relating cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF). Motor assessments and MRI scanning were conducted on drug-naïve patients before and after levodopa therapy (OFF/ON state). Regional NVC differences between patients and NCs were identified, followed by an assessment of the associated receptors/transporters. The influence of levodopa on NVC, CBF, and ALFF within these abnormal regions was analyzed. RESULTS: Compared to NCs, OFF-state patients showed NVC dysfunction in significantly lower NVC in left precentral, postcentral, superior parietal cortex, and precuneus, along with higher NVC in left anterior cingulate cortex, right olfactory cortex, thalamus, caudate, and putamen (P-value <0.0006). The distribution of NVC differences correlated with the density of dopaminergic, serotonin, MU-opioid, and cholinergic receptors/transporters. Additionally, levodopa ameliorated abnormal NVC in most of these regions, where there were primarily ALFF changes with limited CBF modifications. CONCLUSION: Patients exhibited NVC dysfunction primarily in the striato-thalamo-cortical circuit and motor control regions, which could be driven by dopaminergic and nondopaminergic systems, and levodopa therapy mainly restored abnormal NVC by modulating neuronal activity.


Asunto(s)
Acoplamiento Neurovascular , Enfermedad de Parkinson , Humanos , Levodopa/farmacología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Putamen , Circulación Cerebrovascular , Dopamina
2.
Eur Radiol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009880

RESUMEN

OBJECTIVES: To explore the interrelationships between structural and functional changes as well as the potential neurotransmitter profile alterations in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients. METHODS: Structural magnetic resonance imaging (sMRI) and resting-state functional MRI data from 20 drug-naïve BECTS patients and 33 healthy controls (HCs) were acquired. Parallel independent component analysis (P-ICA) was used to identify covarying components among gray matter volume (GMV) maps and fractional amplitude of low-frequency fluctuations (fALFF) maps. Furthermore, we explored the spatial correlations between GMV/fALFF changes derived from P-ICA and neurotransmitter maps in JuSpace toolbox. RESULTS: A significantly positive correlation (p < 0.001) was identified between one structural component (GMV_IC6) and one functional component (fALFF_IC4), which showed significant group differences between drug-naïve BECTS patients and HCs (GMV_IC6: p < 0.01; fALFF_IC4: p < 0.001). GMV_IC6 showed increased GMV in the frontal lobe, temporal lobe, thalamus, and precentral gyrus as well as fALFF_IC4 had enhanced fALFF in the cerebellum in drug-naïve BECTS patients compared to HCs. Moreover, significant correlations between GMV alterations in GMV_IC6 and the serotonin (5HT1a: p < 0.001; 5HT2a: p < 0.001), norepinephrine (NAT: p < 0.001) and glutamate systems (mGluR5: p < 0.001) as well as between fALFF alterations in fALFF_IC4 and the norepinephrine system (NAT: p < 0.001) were detected. CONCLUSION: The current findings suggest co-altered structural/functional components that reflect the correlation of language and motor networks as well as associated with the serotonergic, noradrenergic, and glutamatergic neurotransmitter systems. CLINICAL RELEVANCE STATEMENT: The relationship between anatomical brain structure and intrinsic neural activity was evaluated using a multimodal fusion analysis and neurotransmitters which might provide an important window into the multimodal neural and underlying molecular mechanisms of benign childhood epilepsy with central-temporal spikes. KEY POINTS: Structure-function relationships in drug-naïve benign childhood epilepsy with central-temporal spikes (BECTS) patients were explored. The interrelated structure-function components were found and correlated with the serotonin, norepinephrine, and glutamate systems. Co-altered structural/functional components reflect the correlation of language and motor networks and correlate with the specific neurotransmitter systems.

3.
BMC Psychiatry ; 24(1): 137, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373944

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a complex mental illness characterized by different mood states, including depression, mania/hypomania, and euthymia. This study aimed to comprehensively evaluate dynamic changes in intrinsic brain activity by using dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic degree centrality (dDC) in patients with BD euthymia or depression and healthy individuals. METHODS: The resting-state functional magnetic resonance imaging data were analyzed from 37 euthymic and 28 depressed patients with BD, as well as 85 healthy individuals. Using the sliding-window method, the dfALFF and dDC were calculated for each participant. These values were compared between the 3 groups using one-way analysis of variance (ANOVA). Additional analyses were conducted using different window lengths, step width, and window type to ensure the reliability of the results. RESULTS: The euthymic group showed significantly lower dfALFF and dDC values of the left and right cerebellum posterior lobe compared with the depressed and control groups (cluster level PFWE < 0.05), while the latter two groups were comparable. Brain regions showing significant group differences in the dfALFF analysis overlapped with those with significant differences in the dDC analysis. These results were consistent across different window lengths, step width, and window type. CONCLUSIONS: These findings suggested that patients with euthymic BD exhibit less flexibility of temporal functional activities in the cerebellum posterior lobes compared to either depressed patients or healthy individuals. These results could contribute to the development of neuropathological models of BD, ultimately leading to improved diagnosis and treatment of this complex illness.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/diagnóstico , Reproducibilidad de los Resultados , Encéfalo , Trastorno Ciclotímico , Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
BMC Psychiatry ; 24(1): 313, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658896

RESUMEN

BACKGROUND: Distinguishing untreated major depressive disorder without medication (MDD) from schizophrenia with depressed mood (SZDM) poses a clinical challenge. This study aims to investigate differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognition in untreated MDD and SZDM patients. METHODS: The study included 42 untreated MDD cases, 30 SZDM patients, and 46 healthy controls (HC). Cognitive assessment utilized the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted, and data were processed using fALFF in slow-4 and slow-5 bands. RESULTS: Significant fALFF changes were observed in four brain regions across MDD, SZDM, and HC groups for both slow-4 and slow-5 fALFF. Compared to SZDM, the MDD group showed increased slow-5 fALFF in the right gyrus rectus (RGR). Relative to HC, SZDM exhibited decreased slow-5 fALFF in the left gyrus rectus (LGR) and increased slow-5 fALFF in the right putamen. Changes in slow-5 fALFF in both RGR and LGR were negatively correlated with RBANS scores. No significant correlations were found between remaining fALFF (slow-4 and slow-5 bands) and RBANS scores in MDD or SZDM groups. CONCLUSIONS: Alterations in slow-5 fALFF in RGR may serve as potential biomarkers for distinguishing MDD from SZDM, providing preliminary insights into the neural mechanisms of cognitive function in schizophrenia.


Asunto(s)
Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Femenino , Adulto , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/complicaciones , Cognición/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Pruebas Neuropsicológicas/estadística & datos numéricos , Persona de Mediana Edad , Adulto Joven , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen
5.
J Integr Neurosci ; 23(1): 9, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38287846

RESUMEN

OBJECTIVES: To investigate the differences in functional brain activity and connectivity between nurses working long-term shifts and fixed day shift and explore their correlations with work-related psychological conditions. METHODS: Thirty-five nurses working long-term shifts and 35 nurses working fixed day shifts were recruited. After assessing work-related psychological conditions, such as burnout and perceived stress of these two groups of nurses, amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) analyses were performed to investigate the between-group differences in brain functional activity and connectivity. Furthermore, correlation analysis between the ALFF/FC metrics and psychological conditions was conducted. RESULTS: Compared with nurses working fixed day shifts, nurses working long-term shifts showed higher levels of burnout, perceived stress, and depression scores; lower z-transformed ALFF (zALFF) values in the right dorsolateral prefrontal cortex (dlPFC), right superior parietal lobule (SPL), and right anterior cingulate cortex (ACC); and higher zALFF values in the right middle temporal gyrus (voxel-level p < 0.001, cluster-level p < 0.05, gaussian random field (GRF) correction), as well as lower FC values in the right dlPFC-right SPL and right dlPFC-right ACC (p < 0.05, false discovery rate (FDR) corrected). Moreover, the FC values in the right dlPFC-right SPL were negatively correlated with the perceived stress score in nurses working long-term shifts (p < 0.05, FDR corrected). CONCLUSIONS: This study demonstrated that nurses working long-term shifts had lower functional activity and weaker functional connectivity in the right frontoparietal network, which mainly includes the right dlPFC and right SPL, than those working on regular day shift. The current findings provide new insights into the impacts of long-term shift work on nurses' mental health from a functional neuroimaging perspective.


Asunto(s)
Trastornos Mentales , Lóbulo Parietal , Humanos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Temporal , Giro del Cíngulo/diagnóstico por imagen , Neuroimagen Funcional , Imagen por Resonancia Magnética/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38642117

RESUMEN

The neurobiological mechanism of borderline personality disorder (BPD) in adolescents remains unclear. The study aimed to assess the alterations in neural activity within prefrontal cortex in adolescents with BPD and investigate the relationship of prefrontal activity with emotional regulation and cognitive function. This study enrolled 50 adolescents aged 12-17 years with BPD and 21 gender and age-matched healthy control (HC) participants. Study assessment for each participant included a brain resting-state functional MRI (rs-fMRI), clinical assessment questionnaires such as Borderline Personality Features Scale (BPFS), Difficulties in Emotion Regulation Scale (DERS), Ottawa Self-Injury Inventory and Childhood Trauma Questionnaire (CTQ) and cognitive testing with Stroop Color-Word Test (SCWT). Fractional amplitude of low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC) were obtained from rs-fMRI analysis. Correlation analysis was also performed to evaluate the associations of the neuroimaging metrics such as fALFF and FC with clinical assessment questionnaire and cognitive testing scores. Adolescents with BPD showed increased fALFF values in the right inferior frontal gyrus and decreased activity in the left middle frontal gyrus as compared to the HC group (p < 0.05, cluster size ≥ 100, FWE correction). In adolescents with BPD, increased fALFF in the right inferior frontal gyrus was related to the BPFS (emotional dysregulation), DERS-F (lacking of emotional regulation strategies) and Ottawa Self-Injury Inventory-4 C scores (internal emotional regulation function of self-injurious behavior). The reduced fALFF in the left middle frontal gyrus was associated with the SCWT-A (reading characters) and the SCWT-B (reading color) scores. Additionally, the fALFF values in the left middle frontal gyrus and the right inferior frontal gyrus were related to the CTQ-D (emotional neglect) (p < 0.05). The left middle frontal gyrus exhibited increased FC with the right hippocampus, left inferior temporal gyrus and right inferior frontal gyrus (voxel p < 0.001, cluster p < 0.05, FWE correction). The increased FC between the left middle frontal gyrus and the right hippocampus was related to the SCWT-C (cognitive flexibility) score. We observed diverging changes in intrinsic brain activity in prefrontal cortex, and neural compensatory changes to maintain function in adolescents with BPD. In addition, decreased neural function was closely associated with emotional dysregulation, while increased neural function as indicated by brain activity and FC was associated with cognitive dysfunction. These results indicated that alterations of intrinsic brain activity may be one of the underlying neurobiological markers for clinical symptoms in adolescents with BPD.

7.
J Atten Disord ; 28(5): 834-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379197

RESUMEN

OBJECTIVE: The study involved 17 children with Autism Spectrum Disorder (ASD), 21 with ADHD, 30 with both (ASD + ADHD), and 28 typically developing children (TD). METHODS: The amplitude of low-frequency fluctuations (ALFF) was measured as a regional brain function index. Intrinsic functional connectivity (iFC) was also analyzed using the region of interest (ROI) identified in ALFF analysis. Statistical analysis was done via one-way ANCOVA, Gaussian random field (GRF) theory, and post-hoc pair-wise comparisons. RESULTS: The ASD + ADHD group showed increased ALFF in the left middle frontal gyrus (MFG.L) compared to the TD group. In terms of global brain function, the ASD group displayed underconnectivity in specific regions compared to the ASD + ADHD and TD groups. CONCLUSION: The findings contribute to understanding the neural mechanisms underlying ASD + ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Lóbulo Frontal , Imagen por Resonancia Magnética
8.
Neurotherapeutics ; 21(2): e00320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262102

RESUMEN

Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n â€‹= â€‹16) and a conventional therapy (CT) group (n â€‹= â€‹19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n â€‹= â€‹16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Imagen por Resonancia Magnética/métodos , Terapia del Movimiento Espejo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Encéfalo/diagnóstico por imagen , Vías Eferentes , Recuperación de la Función/fisiología
9.
Clin Ophthalmol ; 18: 659-670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468914

RESUMEN

Objective: Primary angle-closure glaucoma (PACG) is a globally prevalent, irreversible eye disease leading to blindness. Previous neuroimaging studies demonstrated that PACG patients were associated with gray matter function changes. However, whether the white matter(WM) function changes in PACG patients remains unknown. The purpose of the study is to investigate WM function changes in the PACG patients. Methods: In total, 40 PACG patients and 40 well-matched HCs participated in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We compared between-group differences between PACG patients and HC in the WM function using amplitude of low-frequency fluctuations (ALFF). In addition, the SVM method was applied to the construction of the PACG classification model. Results: Compared with the HC group, ALFF was attenuated in right posterior thalamic radiation (include optic radiation), splenium of corpus callosum, and left tapetum in the PACG group, the results are statistically significant (GRF correction, voxel-level P < 0.001, cluster-level P < 0.05). Furthermore, the SVM classification had an accuracy of 80.0% and an area under the curve (AUC) of 0.86 for distinguishing patients with PACG from HC. Conclusion: The findings of our study uncover abnormal WM functional alterations in PACG patients and mainly involves vision-related regions. These findings provide new insights into widespread brain damage in PACG from an alternative WM functional perspective.

10.
Asian J Psychiatr ; 94: 103936, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359519

RESUMEN

BACKGROUND: Methamphetamine (MA) is a widely used and detrimental drug, yet the precise mechanisms by which MA affects cognitive function remain unclear. This study aims to investigate the relationship between cognitive function and brain functional imaging in individuals with MA use disorder (MUD). METHODS: This study involved 45 patients diagnosed with MUD and 43 healthy controls (HC). Cognitive function assessment utilized the MATRICS Consensus Cognitive Battery, and functional data were acquired using a 3.0 Tesla magnetic resonance imaging scanner. RESULTS: The MUD group exhibited lower regional homogeneity (ReHo) values in the bilateral postcentral, the left superior temporal, and the left lingual regions compared to the HC group. Additionally, the MUD group displayed higher amplitude of low-frequency fluctuation (ALFF) values in the bilateral fusiform and the left putamen compared to the HC group, along with lower ALFF values in the bilateral postcentral cortices and the left middle cingulate cortex compared to the HC group (all p < 0.05, with false discovery rate corrected). Linear regression analysis revealed a positive correlation between the ReHo value in the right postcentral cortex and the neuropsychology assessment battery-mazes test (p = 0.014). Furthermore, the ALFF value in the left putamen showed negative correlations with the scores of the digit-symbol coding test (p = 0.027), continuous performance test (p = 0.037), and battery-mazes test (p = 0.024). CONCLUSION: Patients with MUD exhibit altered brain spontaneous neurological activities, and the intensity of spontaneous neurological activity in the left putamen is strongly associated with cognitive function.


Asunto(s)
Mapeo Encefálico , Metanfetamina , Humanos , Mapeo Encefálico/métodos , Metanfetamina/efectos adversos , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Imagen por Resonancia Magnética/métodos , Cognición
11.
Res Dev Disabil ; 147: 104701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402713

RESUMEN

BACKGROUND: Limited study has investigated the influence of parent-child interaction on brain functional alterations and development outcomes of autism spectrum disorder (ASD) children. This pilot study aimed to explore the relationship between parent-child interaction, brain functional activities and development outcomes of ASD children. METHODS: and Procedures: 653 ASD with an average age of 41.06 ± 10.88 months and 102 typically developmental (TD) children with an average age of 44.35 ± 18.39 months were enrolled in this study, of whom 155 ASD completed brain rs-fMRI scans. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) measured using resting-state functional magnetic resonance imaging (rs-fMRI) data reflect local brain function. The parent-child interaction was assessed by the Chinese Parent-child Interaction Scale (CPCIS). Childhood Autism Rating Scale (CARS) and developmental quotient (DQ) indicated development outcomes. OUTCOMES AND RESULTS: Total CPCIS score was negatively correlated with CARS total score, and positively correlated with DQ. The frequency of parent-child interaction was negatively correlated with ALFF values in the left median cingulate and paracingulate gyri (DCG.L) and ReHo values in the right superior frontal gyrus, medial (SFGmed.R)(P < 0.05, FDR correction). ALFF values in the DCG.L and ReHo values in the SFGmed.R play complete mediating roles in the relationship between parent-child interaction and performance DQ. CONCLUSION AND IMPLICATIONS: This study suggest that parent-child interaction has an impact on autistic characteristics and DQ of ASD children. Local brain regions with functional abnormalities in the DCG.L and SFGmed.R may be a crucial factors affecting the performance development of ASD children with reduced parent-child interaction.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Preescolar , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Proyectos Piloto , Encéfalo/diagnóstico por imagen
12.
Front Neurol ; 15: 1408759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938780

RESUMEN

Background: Neuropathic pain is one of the most common symptoms in neuromyelitis optica spectrum disorder (NMOSD). Notwithstanding, its underlying mechanism remains obscure. Methods: The amplitude of low-frequency fluctuations (ALFF) metric was employed to investigate spontaneous neural activity alterations via resting-state functional magnetic resonance imaging (rs-MRI) data from a 3.0 T MRI scanner, in a sample of 26 patients diagnosed with NMOSD with neuropathic pain (NMOSD-WNP), 20 patients with NMOSD but without neuropathic pain (NMOSD-WoNP), and 38 healthy control (HC) subjects matched for age and sex without the comorbidity of depressive or anxious symptoms. Results: It was observed that patients with NMOSD-WNP displayed a significant ALFF decrease in the left amygdala and right anterior insula, relative to both patients with NMOSD-WoNP and HC subjects. Furthermore, ALFF values in the left amygdala were negatively correlated with the scores of the Douleur Neuropathique en 4 Questions and McGill Pain Questionnaire (both sensory and affective descriptors) in patients with NMOSD-WNP. Additionally, there were negative correlations between the ALFF values in the right anterior insula and the duration of pain and the number of relapses in patients with NMOSD-WNP. Conclusion: The present study characterizes spontaneous neural activity changes in brain regions associated with sensory and affective processing of pain and its modulation, which underscore the central aspects in patients with NMOSD-WNP. These findings might contribute to a better understanding of the pathophysiologic basis of neuropathic pain in NMOSD.

13.
Schizophr Res ; 267: 519-527, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704344

RESUMEN

BACKGROUND: Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS: In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS: In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION: Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.


Asunto(s)
Antipsicóticos , Sistema Límbico , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Masculino , Femenino , Adulto , Antipsicóticos/farmacología , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiopatología , Estudios Longitudinales , Adulto Joven , Resultado del Tratamiento , Evaluación de Resultado en la Atención de Salud , Persona de Mediana Edad , Máquina de Vectores de Soporte
14.
Brain Res ; 1844: 149140, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111522

RESUMEN

Nearly half of the amyotrophic lateral sclerosis (ALS) patients showed hyperintensity of the corticospinal tract (CST+), yet whether brain functional pattern differs between CST+and CST- patients remains obscure. In the current study, 19 ALS CST+, 41 ALS CST- patients and 37 healthy controls (HC) underwent resting state fMRI scans. We estimated local activity and connectivity patterns via the Amplitude of Low Frequency Fluctuations (ALFF) and the Network-Based Statistic (NBS) approaches respectively. The ALS CST+patients did not differ from the CST- patients in amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) score and disease duration. ALFF of the superior frontal gyrus (SFG) and the inferior frontal gyrus pars opercularis (OIFG) were highest in the HC and lowest in the ALS CST- patients, resulting in significant group differences (PFWE<0.05). NBS analysis revealed a frontal network consisting of connections between SFG, OIFG, orbital frontal gyrus, middle cingulate cortex and the basal ganglia, which exhibited HC>ALS CST+ > ALS CST- group differences (PFWE=0.037) as well. The ALFF of the OIFG was significantly correlated with ALSFRS-R (R=0.34, P=0.028) and mean connectivity of the frontal network was trend-wise significantly correlated with disease duration (R=-0.31, P=0.052) in the ALS CST- patients. However, these correlations were insignificant in ALS CST+patients (P values > 0.8). In conclusion, The ALS CST+patients exhibited different patterns of baseline functional activity and connectivity in the frontal cortex which may indicate a functional compensatory effect.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38901756

RESUMEN

BACKGROUND: Abnormal structure and function of gray matter (GM) have been discovered in the cortico-striatal-thalamic-cortical (CSTC) circuit in obsessive-compulsive disorder (OCD). The GM structure and function may be influenced by the structure and function of the white matter (WM). Therefore, it is crucial to explore the characteristics of WM in OCD. METHODS: Diffusion tensor imaging and resting-state functional magnetic resonance imaging data of 52 patients with OCD and 39 healthy controls (HCs) were collected. The tract-based spatial statistics, amplitude of low-frequency fluctuations (ALFF), and structural-functional coupling approaches were utilized to explore the WM structure and function. Furthermore, the relationship between the abnormal WM structure and function and clinical symptoms of OCD was investigated using Pearson's correlation. Support vector machine was performed to evaluate whether patients with OCD could be identified with the changed WM structure and function. RESULTS: Compared to HCs, the lower fractional anisotropy (FA) values of four clusters including the superior corona radiata, anterior corona radiata, right superior longitudinal fasciculus, corpus callosum, left posterior corona radiata, fornix, and the right anterior limb of internal capsule, reduced ALFF/FA ratio in the left anterior thalamic radiation (ATR), and the decreased functional connectivity between the left ATR and the left dorsal lateral prefrontal cortex within CSTC circuit at rest were observed in OCD. The decreased ALFF/FA ratio in the left ATR negatively correlated with Yale-Brown Obsessive-Compulsive Scale obsessive thinking scores and Hamilton Anxiety Rating Scale scores in OCD. Furthermore, the features that combined the abnormal WM structure and function performed best in distinguishing OCD from HCs with the appropriate accuracy (0.80), sensitivity (0.82), as well as specificity (0.80). CONCLUSION: Current research discovered changed WM structure and function in OCD. Furthermore, abnormal WM structural-functional coupling may lead to aberrant GM connectivity within the CSTC circuit at rest in OCD. TRIAL REGISTRATION: Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (ChiCTR-COC-17013301).


Asunto(s)
Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Humanos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/patología , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Adulto Joven , Máquina de Vectores de Soporte , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología
16.
Artículo en Inglés | MEDLINE | ID: mdl-38901758

RESUMEN

BACKGROUND: Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods. METHODS: A total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity. RESULTS: Schizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features. CONCLUSIONS: The static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Descanso/fisiología , Adulto Joven , Mapeo Encefálico/métodos , Máquina de Vectores de Soporte
17.
World J Psychiatry ; 14(2): 276-286, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38464765

RESUMEN

BACKGROUND: Major depression disorder (MDD) constitutes a significant mental health concern. Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults, with a corresponding increased risk of suicide. In studying brain dysfunction associated with MDD in adole-scents, research on brain white matter (WM) is sparse. Some researchers even mistakenly regard the signals generated by the WM as noise points. In fact, studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations. The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear. AIM: To explore potential abnormalities in WM functional signals in adolescents with MDD. METHODS: This study involved 48 adolescent patients with MDD and 31 healthy controls (HC). All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview (MINI) suicide inventory. In addition, a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects' image data. The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity, followed by a two-sample t-test between the MDD and HC groups. Independent component analysis (ICA) was also used to evaluate the WM functional signal. Pearson's correlation was performed to assess the relationship between statistical test results and clinical scales. RESULTS: Compared to HC, individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body, left posterior limb of the internal capsule, right superior corona radiata, and bilateral posterior corona radiata [P < 0.001, family-wise error (FWE) voxel correction]. The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata, and decreased in the left superior longitudinal fasciculus (P < 0.001, FWE voxel correction). The ICA results of WM overlapped with those of regional homo-geneity. The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale (P = 0.026, r = -0.32), and the right posterior corona radiata was also negatively correlated with the MINI suicide scale (P = 0.047, r = -0.288). CONCLUSION: Adolescents with MDD involves changes in WM functional signals, and these differences in brain regions may increase the risk of suicide.

18.
Front Neurosci ; 18: 1361320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500485

RESUMEN

Background: The previous studies have demonstrated that patients with Crohn's disease in remission (CD-R) have abnormal alterations in brain function. However, whether brain function changes in patients with Crohn's disease in activity (CD-A) and the relationship with CD-R are still unclear. In this study, we aimed to investigate whether the different levels of disease activity may differentially affect the brain function and to find the brain functional biomarker distinguishing patients with different disease stages by measuring the amplitude of low frequency fluctuations (ALFF). Methods: 121 patients with CD and 91 healthy controls (HCs) were recruited. The clinical and psychological assessment of participants were collected. The criteria for the disease activity were the Crohn's disease activity index (CDAI) scores. CD-R refers to CD patients in remission which the CDAI score is less than 150. Conversely, CD-A refers to CD patients in activity which the CDAI score is ≥150. The ALFF was compared among three groups by performing one-way analysis of variance, followed by a post hoc two-sample t-test. Differences among the groups were selected as seeds for functional connectivity analyses. We also investigated the correlation among clinical, psychological scores and ALFF. Binary logistic regression analysis was used to examine the unique contribution of the ALFF characteristics of the disease stages. Results: There were widespread differences of ALFF values among the 3 groups, which included left frontal pole (FP_L), right supramarginal gyrus (SG_R), left angular gyrus (AG_L), right cingulate gyrus (CG_R), right intracalcarine cortex (IC_R), right parahippocampal gyrus (PG_R), right lingual gyrus (LG_R), right precuneous cortex (PC_R), left occipital fusiform gyrus (OFG_L). Significant brain regions showing the functional connections (FC) increased in FP_L, SG_R, PC_R and OFG_L between CD-A and HCs. The erythrocyte sedimentation rate had a negative correlation with the ALFF values in PC_R in the patients with CD. The phobic anxiety values had a negative correlation with the ALFF values in OFG_L. The psychoticism values had a negative correlation with ALFF values in the IC_R. And the hostility values had a positive correlation with the ALFF values in CG_R. Significant brain regions showing the FC increased in FP_L, SG_R, CG_R, PG_R, LG_R and OFG_L between CD-R and HCs. In binary logistic regression models, the LG_R (beta = 5.138, p = 0.031), PC_R (beta = 1.876, p = 0.002) and OFG_L (beta = 3.937, p = 0.044) was disease stages predictors. Conclusion: The results indicated the significance of the altered brain activity in the different disease stages of CD. Therefore, these findings present a potential identify neuroimaging-based brain functional biomarker in CD. Additionally, the study provides a better understanding of the pathophysiology of CD.

19.
Front Neurosci ; 18: 1415411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948928

RESUMEN

Background: Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods: A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results: 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion: This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.

20.
Psychoradiology ; 4: kkae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799033

RESUMEN

Background: Social intelligence refers to an important psychosocial skill set encompassing an array of abilities, including effective self-expression, understanding of social contexts, and acting wisely in social interactions. While there is ample evidence of its importance in various mental health outcomes, particularly social anxiety, little is known on the brain correlates underlying social intelligence and how it can mitigate social anxiety. Objective: This research aims to investigate the functional neural markers of social intelligence and their relations to social anxiety. Methods: Data of resting-state functional magnetic resonance imaging and behavioral measures were collected from 231 normal students aged 16 to 20 years (48% male). Whole-brain voxel-wise correlation analysis was conducted to detect the functional brain clusters related to social intelligence. Correlation and mediation analyses explored the potential role of social intelligence in the linkage of resting-state brain activities to social anxiety. Results: Social intelligence was correlated with neural activities (assessed as the fractional amplitude of low-frequency fluctuations, fALFF) among two key brain clusters in the social cognition networks: negatively correlated in left superior frontal gyrus (SFG) and positively correlated in right middle temporal gyrus. Further, the left SFG fALFF was positively correlated with social anxiety; brain-personality-symptom analysis revealed that this relationship was mediated by social intelligence. Conclusion: These results indicate that resting-state activities in the social cognition networks might influence a person's social anxiety via social intelligence: lower left SFG activity → higher social intelligence → lower social anxiety. These may have implication for developing neurobehavioral interventions to mitigate social anxiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA