Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105337, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838175

RESUMEN

Heavy chain-only antibodies can offer advantages of higher binding affinities, reduced sizes, and higher stabilities than conventional antibodies. To address the challenge of SARS-CoV-2 coronavirus, a llama-derived single-domain nanobody C5 was developed previously that has high COVID-19 virus neutralization potency. The fusion protein C5-Fc comprises two C5 domains attached to a glycosylated Fc region of a human IgG1 antibody and shows therapeutic efficacy in vivo. Here, we have characterized the solution arrangement of the molecule. Two 1443 Da N-linked glycans seen in the mass spectra of C5-Fc were removed and the glycosylated and deglycosylated structures were evaluated. Reduction of C5-Fc with 2-mercaptoethylamine indicated three interchain Cys-Cys disulfide bridges within the hinge. The X-ray and neutron Guinier RG values, which provide information about structural elongation, were similar at 4.1 to 4.2 nm for glycosylated and deglycosylated C5-Fc. To explain these RG values, atomistic scattering modeling based on Monte Carlo simulations resulted in 72,737 and 56,749 physically realistic trial X-ray and neutron structures, respectively. From these, the top 100 best-fit X-ray and neutron models were identified as representative asymmetric solution structures, similar to that of human IgG1, with good R-factors below 2.00%. Both C5 domains were solvent exposed, consistent with the functional effectiveness of C5-Fc. Greater disorder occurred in the Fc region after deglycosylation. Our results clarify the importance of variable and exposed C5 conformations in the therapeutic function of C5-Fc, while the glycans in the Fc region are key for conformational stability in C5-Fc.


Asunto(s)
Anticuerpos Antivirales , Cadenas Pesadas de Inmunoglobulina , SARS-CoV-2 , Humanos , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/química , Modelos Moleculares , Polisacáridos , Anticuerpos Antivirales/química , Anticuerpos de Dominio Único/química
2.
Biochem J ; 474(13): 2203-2217, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28533266

RESUMEN

Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4-17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease.


Asunto(s)
Colágeno/química , Colágeno/metabolismo , Fragmentos de Péptidos/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
3.
Materials (Basel) ; 13(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967263

RESUMEN

To find materials with an appropriate response to THz radiation is key for the incoming THz technology revolution. Unfortunately, this region of the electromagnetic spectra remains largely unexplored in most materials. The present work aims at unveiling the most significant THz fingerprints of cement-based materials. To this end transmission experiments have been carried out over Ordinary Portland Cement (OPC) and geopolymer (GEO) binder cement pastes in combination with atomistic simulations. These simulations have calculated for the first time, the dielectric response of C-S-H and N-A-S-H gels, the most important hydration products of OPC and GEO cement pastes respectively. Interestingly both the experiments and simulations reveal that both varieties of cement pastes exhibit three main characteristic peaks at frequencies around ~0.6 THz, ~1.05 THz and ~1.35 THz, whose origin is governed by the complex dynamic of their water content, and two extra signals at ~1.95 THz and ~2.75 THz which are likely related to modes involving floppy parts of the dried skeleton.

4.
Cancers (Basel) ; 12(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013098

RESUMEN

Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB1 determines its cellular location.

5.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882852

RESUMEN

High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, ß-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.

6.
Artículo en Inglés | MEDLINE | ID: mdl-23719702

RESUMEN

Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the ß polymorph. Crystal-chemically sensible model structures are provided for ß-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA