Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 82(19): 3598-3612.e7, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36113480

RESUMEN

Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.


Asunto(s)
Cromatina , Nucleosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Tareas del Hogar , Nucleosomas/genética , Nucleosomas/metabolismo
2.
Genes Dev ; 35(3-4): 273-285, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446572

RESUMEN

The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.


Asunto(s)
Expresión Génica/genética , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células HCT116 , Respuesta al Choque Térmico , Humanos , Factores de Elongación de Péptidos/genética , Proteínas/genética , Proteínas/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/genética
3.
Mol Cell Proteomics ; 22(8): 100614, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392812

RESUMEN

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation sites and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent dephosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.


Asunto(s)
Neoplasias Colorrectales , Proteínas Serina-Treonina Quinasas , Humanos , Proteolisis , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Treonina/metabolismo , Neoplasias Colorrectales/genética , Proteína Fosfatasa 2/metabolismo
4.
Proteomics ; 21(1): e2000166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970932

RESUMEN

Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin-inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data-dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.


Asunto(s)
Proteómica , Proteínas de Ciclo Celular , Proteína Fosfatasa 2 , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
5.
Biol Reprod ; 101(4): 704-718, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31299080

RESUMEN

The disruption of protein expression is a major approach used for investigating protein function in mammalian oocytes. This is often achieved with RNAi/morpholino-mediated knockdown or gene knockout, leading to long-term loss of proteins of interest. However, these methods have noteworthy limitations, including (a) slow protein turnover can prohibit use of these approaches; (b) essential roles in early events precludes characterization of functions in subsequent events; (c) extended protein loss can allow time for compensatory mechanisms and other unanticipated events that confound interpretation of results. The work presented here examines the use of auxin-inducible degradation, a powerful new approach that overcomes these limitations through the depletion of one's protein of interest through controllable ubiquitin-mediated degradation. This method has been employed in yeast and mammalian cell lines, and here we demonstrate the utility of auxin-inducible degradation in mouse oocytes at multiple stages of meiosis, through degradation of exogenously expressed EGFP. We also evaluate important parameters for experimental design for use of this system in oocytes. This study thus expands the toolkit of researchers in oocyte biology, establishing the use of this unique and versatile approach for depleting proteins in oocytes, and providing researchers with valuable information to make use of this system.


Asunto(s)
Ácidos Indolacéticos/farmacología , Oocitos/efectos de los fármacos , Proteolisis/efectos de los fármacos , Genética Inversa/métodos , Animales , Células Cultivadas , Clonación de Organismos/métodos , Clonación de Organismos/veterinaria , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mamíferos , Meiosis/efectos de los fármacos , Meiosis/genética , Ratones , Oocitos/metabolismo , Organismos Modificados Genéticamente , Genética Inversa/veterinaria
6.
Development ; 142(24): 4374-84, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26552885

RESUMEN

Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3' UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism.


Asunto(s)
Caenorhabditis elegans/metabolismo , Ácidos Indolacéticos/farmacología , Proteolisis/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Pérdida del Embrión/patología , Fertilidad/efectos de los fármacos , Eliminación de Gen , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Larva/efectos de los fármacos , Meiosis/efectos de los fármacos , Proteínas Nucleares/metabolismo , Especificidad de Órganos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
7.
Front Cell Dev Biol ; 12: 1451027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234563

RESUMEN

Introduction: Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. Methods: We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Results and discussion: Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2ARts1), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2ARts1-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.

8.
mSphere ; 8(5): e0028323, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37594261

RESUMEN

A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation, AID2, systems work efficiently and rapidly in the human pathogenic yeasts, Candida albicans and Candida glabrata. We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid. Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens. IMPORTANCE Life-threatening fungal infections are an escalating human health problem, complicated by limited treatment options and the evolution of drug resistant pathogen strains. Identification of new targets for therapeutics to combat invasive fungal infections, including those caused by Candida species, is an urgent need. In this report, we establish and validate an inducible protein degradation methodology in Candida albicans and Candida glabrata that provides a new tool for protein functional characterization in these, and likely other, fungal pathogen species. We expect this tool will ultimately be useful for the identification and characterization of promising drug targets and factors involved in virulence and drug resistance.


Asunto(s)
Candida , Micosis , Humanos , Proteolisis , Candida albicans/genética , Micosis/tratamiento farmacológico , Candida glabrata/genética
9.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961087

RESUMEN

Reversible protein phosphorylation is an abundant post-translational modification dynamically regulated by opposing kinases and phosphatases. Protein phosphorylation has been extensively studied in cell division, where waves of cyclin-dependent kinase activity, peaking in mitosis, drive the sequential stages of the cell cycle. Here we developed and employed a strategy to specifically probe kinase or phosphatase substrates at desired times or experimental conditions in the model organism Saccharomyces cerevisiae. We combined auxin-inducible degradation (AID) with mass spectrometry-based phosphoproteomics, which allowed us to arrest physiologically normal cultures in mitosis prior to rapid phosphatase degradation and phosphoproteome analysis. Our results revealed that protein phosphatase 2A coupled with its B56 regulatory subunit, Rts1 (PP2ARts1), is involved in dephosphorylation of numerous proteins in mitosis, highlighting the need for phosphatases to selectively maintain certain proteins in a hypophosphorylated state in the face of high mitotic kinase activity. Unexpectedly, we observed elevated phosphorylation at many sites on several subunits of the fungal eisosome complex following rapid Rts1 degradation. Eisosomes are dynamic polymeric assemblies that create furrows in the plasma membrane important in regulating nutrient import, lipid metabolism, and stress responses, among other things. We found that PP2ARts1-mediated dephosphorylation of eisosomes promotes their plasma membrane association and we provide evidence that this regulation impacts eisosome roles in metabolic homeostasis. The combination of rapid, inducible protein degradation with proteomic profiling offers several advantages over common protein disruption methods for characterizing substrates of regulatory enzymes involved in dynamic biological processes.

10.
Elife ; 122023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700544

RESUMEN

Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.


Most animals, plants, and fungi reproduce sexually, meaning that the genetic information from two parents combines during fertilization to produce offspring. This parental genetic information is carried within the reproductive cells in the form of chromosomes. Reproductive cells in the ovaries or testes first multiply through normal cell division, but then go through a unique type of cell division called meiosis. During meiosis, pairs of chromosomes ­ the two copies inherited from each parent ­ must find each other and physically line up from one end to the other. As they align side-by-side with their partners, chromosomes also go through a mixing process called recombination, during which regions of one chromosome cross over to the paired chromosome to exchange information. Scientists are still working to understand how this process of chromosome alignment and crossing-over is controlled. If chromosomes fail to line up or cross over during meiosis, eggs or sperm can end up with too many or too few chromosomes. If these faulty reproductive cells combine during fertilization this can lead to birth defects and developmental problems. To minimize this problem, reproductive cells have a quality control mechanism during meiosis called "crossover assurance", which limits how often mistakes occur. Zhang et al. have investigated how cells can tell if their chromosomes have accomplished this as they undergo meiosis. They looked at egg cells of the roundworm C. elegans, whose meiotic processes are similar to those in humans. In C. elegans, a protein called CHK-2 regulates many of the early events during meiosis. During successful meiosis, CHK-2 is active for only a short amount of time. But if there are problems during recombination, CHK-2 stays active for longer and prevents the cell division from proceeding. Zhang et al. uncovered another protein that affects for how long CHK-2 stays switched on. When chromosomes align with their partners, a protein called PLK-2 sticks to other proteins at the interface between the aligned chromosomes. A combination of microscopy and test tube experiments showed that when PLK-2 is bound to this specific location, it can turn off CHK-2. However, if the chromosome alignment fails, PLK-2 is not activated to switch off CHK-2. Therefore, CHK-2 is only switched off when the chromosomes are properly aligned and move on to the next step in crossing-over, which then allows meiosis to proceed. Thus, PLK-2 and CHK-2 work together to detect errors and to slow down meiosis if necessary. Further experiments in mammalian reproductive cells will reveal how similar the crossover assurance mechanism is in different organisms. In the future, improved understanding of quality control during meiosis may eventually lead to improvements in assisted reproduction.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Emparejamiento Cromosómico , Meiosis , Complejo Sinaptonémico/metabolismo
11.
Methods Mol Biol ; 2502: 129-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412236

RESUMEN

Over the last decade, the use of auxin-inducible degrons (AID) to control the stability of target proteins has revolutionized the field of cell biology. AID-mediated degradation helps to overcome multiple hurdles that have been encountered in studying multisubunit protein complexes, like the nuclear pore complex (NPC), using classical biochemical and genetic methods. We have used the AID system for acute depletion of individual members of the NPC, called nucleoporins, in order to distinguish their roles both within established NPCs and during NPC assembly.Here, we describe a protocol for CRISPR/Cas9-mediated gene targeting of genes with the AID tag. As an example, we describe a step-by-step protocol for targeting of the NUP153 gene. We also provide recommendations for screening strategies and integration of the sequence encoding the Transport Inhibitor Response 1 (TIR1) protein, a E3-Ubiquitin ligase subunit necessary for AID-dependent protein degradation. In addition, we discuss applications of the NUP-AID system and functional assays for analysis of NUP-AID tagged cell lines.


Asunto(s)
Marcación de Gen , Ácidos Indolacéticos , Proteínas de Complejo Poro Nuclear , Sistemas CRISPR-Cas , Marcación de Gen/métodos , Ácidos Indolacéticos/farmacología , Poro Nuclear , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas , Proteolisis
12.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363276

RESUMEN

Recent studies have indicated that some phenotypes caused by decreased function of select neurodevelopmental disorder (NDD) risk genes can be reversed by restoring gene function in adulthood. However, few of the hundreds of risk genes have been assessed for adult phenotypic reversibility. We developed a strategy to rapidly assess the temporal requirements and phenotypic reversibility of NDD risk gene orthologs using a conditional protein degradation system and machine-vision phenotypic profiling in Caenorhabditis elegans. We measured how degrading and re-expressing orthologs of EBF3, BRN3A and DYNC1H1 at multiple periods throughout development affect 30 morphological, locomotor, sensory and learning phenotypes. We found that phenotypic reversibility was possible for each gene studied. However, the temporal requirements of gene function and degree of rescue varied by gene and phenotype. This work highlights the critical need to assess multiple windows of degradation and re-expression and a large number of phenotypes to understand the many roles a gene can have across the lifespan. This work also demonstrates the benefits of using a high-throughput model system to prioritize NDD risk genes for re-expression studies in other organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Trastornos del Neurodesarrollo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad , Trastornos del Neurodesarrollo/genética , Fenotipo
13.
Curr Biol ; 31(1): 115-127.e3, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33186548

RESUMEN

Spindle assembly is spatially regulated by a chromosome-derived Ran- GTP gradient. Previous work proposed that Ran-GTP activates spindle assembly factors (SAFs) around chromosomes by dissociating inhibitory importins from SAFs. However, it is unclear whether the Ran-GTP gradient equivalently activates SAFs that localize at distinct spindle regions. In addition, Ran's dual functions in interphase nucleocytoplasmic transport and mitotic spindle assembly have made it difficult to assess its mitotic roles in somatic cells. Here, using auxin-inducible degron technology in human cells, we developed acute mitotic depletion assays to dissect Ran's mitotic roles systematically and separately from its interphase function. In contrast to the prevailing model, we found that the Ran pathway is not essential for spindle assembly activities that occur at sites spatially separated from chromosomes, including activating NuMA for spindle-pole focusing or for targeting TPX2. On the other hand, Ran-GTP is required to localize HURP and HSET specifically at chromosome-proximal regions to set proper spindle length during prometaphase. We demonstrated that Ran-GTP and importin-ß coordinately promote HURP's dynamic microtubule binding-dissociation cycle, which maintains HURP near chromosomes during metaphase. Together, we propose that the Ran pathway acts on spindle assembly independently of its interphase functions in mitotic human cells but does not equivalently regulate all Ran-regulated SAFs. Ran-dependent spindle assembly is likely coupled with additional parallel pathways that activate SAFs distantly located from the chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas de Neoplasias/metabolismo , Polos del Huso/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteínas de Ciclo Celular/genética , Cromosomas , Técnicas de Sustitución del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Células HCT116 , Células HEK293 , Humanos , Microscopía Intravital , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
14.
FEBS J ; 285(23): 4378-4393, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30321477

RESUMEN

Tools that allow inducible and reversible depletion of target proteins are critical for biological studies. The plant-derived auxin-inducible degradation system (AID) enables the degradation of target proteins tagged with the AID motif. This system has been recently employed in mammalian cells as well as in Caenorhabditis elegans and Drosophila. To test the utility of the AID approach in the nervous system, we used circadian locomotor rhythms as a model and applied the AID method to temporally and spatially degrade PERIOD (PER), a critical pacemaker protein in Drosophila. We found that the period locus can be efficiently tagged with the AID motif by CRISPR/Cas9-based genome editing without disrupting PER function. Moreover, we demonstrated that the AID system could be used to induce rapid and efficient protein degradation in the nervous system as shown by effects on circadian and sleep behaviors. Furthermore, the protein degradation by AID was rapidly reversible after auxin removal. Together, our results show that the AID system provides a powerful tool for behavior studies in Drosophila.


Asunto(s)
Proteínas de Drosophila/metabolismo , Edición Génica , Ácidos Indolacéticos/farmacología , Sistema Nervioso/metabolismo , Proteínas Circadianas Period/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteolisis/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Locomoción , Masculino , Sistema Nervioso/efectos de los fármacos , Proteínas Circadianas Period/antagonistas & inhibidores , Proteínas Circadianas Period/genética
15.
G3 (Bethesda) ; 8(8): 2655-2662, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29880556

RESUMEN

The ability to control both the means and timing of sexual reproduction provides a powerful tool to understand not only fertilization but also life history trade-offs resulting from sexual reproduction. However, precisely controlling fertilization has proved a major challenge across model systems. An ideal sterility induction system should be external, non-toxic, and reversible. Using the auxin-inducible degradation system targeting the spe-44 gene within the nematode Caenorhabditis elegans, we designed a means of externally inducing spermatogenesis arrest. We show that exposure to auxin during larval development induces both hermaphrodite self-sterility and male sterility. Moreover, male sterility can be reversed upon cessation of auxin exposure. The sterility induction system developed here has multiple applications in the fields of spermatogenesis and mating systems evolution. Importantly, this system is also a highly applicable tool for aging studies. In particular, we show that auxin-induced self-sterility is comparable to the commonly used chemically-induced FUdR sterility, while offering multiple benefits, including being less labor intensive, being non-toxic, and avoiding compound interactions with other experimental treatments.


Asunto(s)
Caenorhabditis elegans/genética , Ácidos Indolacéticos/farmacología , Infertilidad Masculina/genética , Espermatogénesis/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Femenino , Infertilidad Masculina/inducido químicamente , Longevidad , Masculino , Reproducción , Espermatogénesis/genética
16.
FEBS J ; 284(7): 1056-1069, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28207183

RESUMEN

Inducible protein degradation techniques have considerable advantages over classical genetic approaches, which generate loss-of-function phenotypes at the gene or mRNA level. The plant-derived auxin-inducible degradation system (AID) is a promising technique which enables the degradation of target proteins tagged with the AID motif in nonplant cells. Here, we present a detailed characterization of this method employed during the adult oogenesis of Drosophila. Furthermore, with the help of CRISPR/Cas9-based genome editing, we improve the utility of the AID system in the conditional elimination of endogenously expressed proteins. We demonstrate that the AID system induces efficient and reversible protein depletion of maternally provided proteins both in the ovary and the early embryo. Moreover, the AID system provides a fine spatiotemporal control of protein degradation and allows for the generation of different levels of protein knockdown in a well-regulated manner. These features of the AID system enable the unraveling of the discrete phenotypes of genes with highly complex functions. We utilized this system to generate a conditional loss-of-function allele which allows for the specific degradation of the Vasa protein without affecting its alternative splice variant (solo) and the vasa intronic gene (vig). With the help of this special allele, we demonstrate that dramatic decrease of Vasa protein in the vitellarium does not influence the completion of oogenesis as well as the establishment of proper anteroposterior and dorsoventral polarity in the developing oocyte. Our study suggests that both the localization and the translation of gurken mRNA in the vitellarium is independent from Vasa.


Asunto(s)
Sistemas CRISPR-Cas , ARN Helicasas DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Edición Génica/métodos , Ácidos Indolacéticos/farmacología , Factor de Crecimiento Transformador alfa/genética , Alelos , Animales , Polaridad Celular/efectos de los fármacos , Polaridad Celular/genética , ARN Helicasas DEAD-box/deficiencia , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Herencia Materna , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis/efectos de los fármacos , Oogénesis/genética , Ovario/citología , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Fenotipo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Factor de Crecimiento Transformador alfa/metabolismo
17.
Fly (Austin) ; 10(1): 35-46, 2016 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27010248

RESUMEN

The analysis of consequences resulting after experimental elimination of gene function has been and will continue to be an extremely successful strategy in biological research. Mutational elimination of gene function has been widely used in the fly Drosophila melanogaster. RNA interference is used extensively as well. In the fly, exceptionally precise temporal and spatial control over elimination of gene function can be achieved in combination with sophisticated transgenic approaches and clonal analyses. However, the methods that act at the gene and transcript level cannot eliminate protein products which are already present at the time when mutant cells are generated or RNA interference is started. Targeted inducible protein degradation is therefore of considerable interest for controlled rapid elimination of gene function. To this end, a degradation system was developed in yeast exploiting TIR1, a plant F box protein, which can recruit proteins with an auxin-inducible degron to an E3 ubiquitin ligase complex, but only in the presence of the phytohormone auxin. Here we demonstrate that the auxin-inducible degradation system functions efficiently also in Drosophila melanogaster. Neither auxin nor TIR1 expression have obvious toxic effects in this organism, and in combination they result in rapid degradation of a target protein fused to the auxin-inducible degron.


Asunto(s)
Proteolisis , Proteómica/métodos , Animales , Drosophila melanogaster/metabolismo , Proteínas F-Box , Discos Imaginales/metabolismo , Ácidos Indolacéticos , Ubiquitina-Proteína Ligasas/metabolismo , Alas de Animales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA