RESUMEN
Polyimide is actively applied in various industrial fields because of its strong mechanical properties, owing to the interactions between the polymer chains. Fully aromatic imide structures exhibit high glass-transition temperatures due to the strong interactions between their chains, which hinder chain mobility. Therefore, preparing a material that exhibits self-healing at a low temperature of ≤100 °C and good mechanical properties is challenging. Thus, we prepared imides with four-component semiaromatic structures by adjusting the contents of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4'-(4,4'-isopropylidenediphenoxy)bis(phthalic anhydride) to yield four-component self-healable colorless polyimides (f-SH-CPIs) with novel structures, flexibilities, good mechanical properties, and low healing temperatures. The flexibilities and distances between the polymer chains, as the basis of the trade-off relationship between the mechanical properties and healing efficiency, were controlled. These materials may be used as substrates in wearable devices and multilayer insulation that may protect from space dust, cosmic rays, and satellite fragments.
RESUMEN
In this study, we prepare highly self-healable polymeric coating materials using charge transfer complex (CTC) interactions. The resulting coating materials demonstrate outstanding thermal stability (1 wt% loss thermal decomposition temperature at 420 °C), rapid self-healing kinetics (in 5 min), and high self-healing efficiency (over 99%), which is facilitated by CTC-induced multiple interactions between the polymeric chains. In addition, these materials exhibit excellent optical properties, including transmittance over 91% and yellow index (YI) below 2, and show enhanced weatherability with a ΔYI value below 0.5 after exposure to UV light for 72 h. Furthermore, the self-healable coating materials developed in this study show outstanding mechanical properties by overcoming the limitations of conventional self-healing materials.
RESUMEN
Colorless polyimides (CPIs) with outstanding mechanical properties are essential materials in the production of flexible display panels, foldable windows, and even spacecraft cockpits. This paper specifically elaborates that the Morkit unit, and azo and nitro chromophores are important factors contributing to yellow PI, together with the well-known charge transfer complex (CTC) theory. Three diamine monomers, two anhydrides monomers, and three blockers were used to inhibit chromophores formation and, thus, obtain CPI films. The cut-off wavelength was blue-shifts to 334 nm and the transmittance is improved to 98.9% in the UV-vis range. Mechanical and thermal properties of the CPI films are not reduced through coupling effects of the blockers. Therefore, the inhibition method of the Morkit units and chromophore groups is a promising process for preparing CPIs to be used as flexible display materials.