Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biosystems ; 231: 104986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506818

RESUMEN

The use of kinetic modeling and metabolic control analysis (MCA) to identify possible therapeutic targets and to investigate the controlling and regulatory mechanisms in cancer glycolysis is here reviewed. The glycolytic pathway has been considered a target to decrease cancer cell growth; however, its occurrence in normal cells makes it difficult to design therapeutic strategies that target this pathway in pathological cells. Notwithstanding, the over-expression of all enzymes and transporters, as well as the expression of isoenzymes with different kinetic and regulatory properties in cancer cells, suggested a different distribution of the control of glycolytic flux than that observed in normal cells. Kinetic models of glycolysis are constructed with enzyme kinetics experimental data, validated with the steady-state metabolite concentrations and glycolytic fluxes; applying MCA, permitted us to identify the steps with the highest control of glycolysis in cancer cells, but low control in normal cells. The cancer glycolysis main controlling steps under several metabolic conditions were: glucose transport, hexokinase and hexose-6-phosphate isomerase (HPI); whereas in normal cells were: the first two and phosphofructokinase-1. HPI is the best therapeutic target because it exerts high control in cancer glycolytic flux, but not in normal cells. Furthermore, kinetic modeling also contributed to identifying new feed-back and feed-forward regulatory loops in cancer cells glycolysis, and to understanding the mode of metabolic action of glycolytic inhibitors. Thus, MCA and metabolic modeling allowed to propose new strategies for inhibiting glycolysis in cancer cells.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Glucólisis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Hexoquinasa/metabolismo , Cinética
2.
FEBS Lett ; 587(17): 2806-17, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23816706

RESUMEN

The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.


Asunto(s)
Simulación por Computador , Eritritol/análogos & derivados , Modelos Químicos , Plasmodium falciparum/enzimología , Terpenos/metabolismo , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/química , Algoritmos , Vías Biosintéticas , Inhibidores Enzimáticos/química , Enzimas/química , Eritritol/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Cinética , Modelos Biológicos , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Liasas de Fósforo-Oxígeno/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Transferasas/antagonistas & inhibidores , Transferasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA