Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Crit Care ; 24(1): 36, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019600

RESUMEN

Vasoplegic syndrome is a common occurrence following cardiothoracic surgery and is characterized as a high-output shock state with poor systemic vascular resistance. The pathophysiology is complex and includes dysregulation of vasodilatory and vasoconstrictive properties of smooth vascular muscle cells. Specific bypass machine and patient factors play key roles in occurrence. Research into treatment of this syndrome is limited and extrapolated primarily from that pertaining to septic shock, but is evolving with the expanded use of catecholamine-sparing agents. Recent reports demonstrate potential benefit in novel treatment options, but large clinical trials are needed to confirm.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Vasoplejía/tratamiento farmacológico , Vasoplejía/fisiopatología , Corticoesteroides/uso terapéutico , Angiotensina II/uso terapéutico , Ácido Ascórbico/uso terapéutico , Procedimientos Quirúrgicos Cardíacos/métodos , Dopamina/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Epinefrina/uso terapéutico , Humanos , Azul de Metileno/uso terapéutico , Norepinefrina/uso terapéutico , Fenilefrina/uso terapéutico , Simpatomiméticos/uso terapéutico , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Vasoconstrictores/uso terapéutico , Vasoplejía/etiología , Vasopresinas/uso terapéutico
2.
Crit Care ; 22(1): 10, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29347994

RESUMEN

Catecholamines, in concert with fluid resuscitation, have long been recommended in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has emerged, trending toward decatecholaminization. Contextually, it is time to re-examine the "maintaining blood pressure" paradigm by identifying safer and life-saving alternatives. We put in perspective the emerging and growing knowledge on a promising alternative avenue: the apelinergic system. This target exhibits invaluable pleiotropic properties, including inodilator activity, cardio-renal protection, and control of fluid homeostasis. Taken together, its effects are expected to be greatly beneficial for patients in septic shock.


Asunto(s)
Receptores de Apelina/metabolismo , Catecolaminas/efectos adversos , Choque Séptico/tratamiento farmacológico , Apelina/metabolismo , Apelina/farmacocinética , Apelina/uso terapéutico , Receptores de Apelina/efectos de los fármacos , Homeostasis/fisiología , Humanos , Insuficiencia Multiorgánica/fisiopatología , Insuficiencia Multiorgánica/prevención & control , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacocinética , Hormonas Peptídicas/uso terapéutico
3.
Biomedicines ; 9(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34356830

RESUMEN

Hemodynamic instability due to dysregulated host response is a life-threatening condition requiring vasopressors and vital organ support. Hemoadsorption with Cytosorb has proven to be effective in reducing cytokines and possibly in attenuating the devastating effects of the cytokine storm originating from the immune over-response to the initial insult. We reviewed the PubMed database to assess evidence of the impact of Cytosorb on norepinephrine needs in the critically ill. We further analyzed those studies including data on control cohorts in a comparative pooled analysis, defining a treatment effect as the standardized mean differences in relative reductions in vasopressor dosage at 24 h. The literature search returned 33 eligible studies. We found evidence of a significant reduction in norepinephrine requirement after treatment: median before, 0.55 (IQR: 0.39-0.90); after, 0.09 (0.00-0.25) µg/kg/min, p < 0.001. The pooled effect size at 24 h was large, though characterized by high heterogeneity. In light of the importance of a quick resolution of hemodynamic instability in the critically ill, further research is encouraged to enrich knowledge on the potentials of the therapy.

4.
Ann Intensive Care ; 10(1): 9, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970567

RESUMEN

Activation of arginine-vasopressin is one of the hormonal responses to face vasodilation-related hypotension. Released from the post-pituitary gland, vasopressin induces vasoconstriction through the activation of V1a receptors located on vascular smooth muscle cells. Due to its non-selective receptor affinity arginine-vasopressin also activates V2 (located on renal tubular cells of collecting ducts) and V1b (located in the anterior pituitary and in the pancreas) receptors, thereby potentially promoting undesired side effects such as anti-diuresis, procoagulant properties due to release of the von Willebrand's factor and platelet activation. Finally, it also cross-activates oxytocin receptors. During septic shock, vasopressin plasma levels were reported to be lower than expected, and a hypersensitivity to its vasopressor effect is reported in such situation. Terlipressin and selepressin are synthetic vasopressin analogues with a higher affinity for the V1 receptor, and, hence, potentially less side effects. In this narrative review, we present the current knowledge of the rationale, benefits and risks of vasopressin use in the setting of septic shock and vasoplegic shock following cardiac surgery. Clearly, vasopressin administration allows reducing norepinephrine requirements, but so far, no improvement of survival was reported and side effects are frequent, particularly ischaemic events. Finally, we will discuss the current indications for vasopressin and its agonists in the setting of septic shock, and the remaining unresolved questions.

5.
Ann Intensive Care ; 8(1): 102, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374729

RESUMEN

BACKGROUND: Improving sepsis support is one of the three pillars of a 2017 resolution according to the World Health Organization (WHO). Septic shock is indeed a burden issue in the intensive care units. Hemodynamic stabilization is a cornerstone element in the bundle of supportive treatments recommended in the Surviving Sepsis Campaign (SSC) consecutive biannual reports. MAIN BODY: The "Pandera's box" of septic shock hemodynamics is an eternal debate, however, with permanent contentious issues. Fluid resuscitation is a prerequisite intervention for sepsis rescue, but selection, modalities, dosage as well as duration are subject to discussion while too much fluid is associated with worsen outcome, vasopressors often need to be early introduced in addition, and catecholamines have long been recommended first in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has come out. Preservation of the macrocirculation through a "best" mean arterial pressure target is the actual priority but is still contentious. Microcirculation recruitment is a novel goal to be achieved but is claiming more knowledge and monitoring standardization. Protection of the cardio-renal axis, which is prevalently injured during septic shock, is also an unavoidable objective. Several promising alternative or additive drug supporting avenues are emerging, trending toward catecholamine's sparing or even "decatecholaminization." Topics to be specifically addressed in this review are: (1) mean arterial pressure targeting, (2) fluid resuscitation, and (3) hemodynamic drug support. CONCLUSION: Improving assessment and means for rescuing hemodynamics in early septic shock is still a work in progress. Indeed, the bigger the unresolved questions, the lower the quality of evidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA