RESUMEN
Clinicians have long been interested in understanding the molecular basis of diabetic kidney disease (DKD)and its potential treatment targets. Its pathophysiology involves protein phosphorylation, one of the most recognizable post-transcriptional modifications, that can take part in many cellular functions and control different metabolic processes. In order to recognize the molecular and protein changes of DKD kidney, this study applied Tandem liquid chromatography-mass spectrometry (LC-MS/MS) and Next-Generation Sequencing, along with Tandem Mass Tags (TMT) labeling techniques to evaluate the mRNA, protein and modified phosphorylation sites between DKD mice and model ones. Based on Gene Ontology (GO) and KEGG pathway analyses of transcriptome and proteome, The molecular changes of DKD include accumulation of extracellular matrix, abnormally activated inflammatory microenvironment, oxidative stress and lipid metabolism disorders, leading to glomerulosclerosis and tubulointerstitial fibrosis. Oxidative stress has been emphasized as an important factor in DKD and progression to ESKD, which is directly related to podocyte injury, albuminuria and renal tubulointerstitial fibrosis. A histological study of phosphorylation further revealed that kinases were crucial. Three groups of studies have found that RAS signaling pathway, RAP1 signaling pathway, AMPK signaling pathway, PPAR signaling pathway and HIF-1 signaling pathway were crucial for the pathogenesis of DKD. Through this approach, it was discovered that targeting specific molecules, proteins, kinases and critical pathways could be a promising approach for treating DKD.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Cromatografía Liquida , Multiómica , Espectrometría de Masas en Tándem , FibrosisRESUMEN
Fatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated. In the present study, we used this diabetic mouse model and a proximal tubule epithelial cell line (HK2) to investigate the potential relationship between long-chain acyl-CoA synthetase 1 (ACSL1) and lipid metabolism in response to fatty acid exposure and inflammatory signals. We found ACSL1 expression was significantly increased in the kidney cortex of db/db mice, and exposure to palmitate or tumor necrosis factor-α significantly increased Acsl1 mRNA expression in HK-2 cells. In addition, palmitate treatment significantly increased the levels of long-chain acylcarnitines and fatty acyl CoAs in HK2 cells, and these increases were abolished in HK2 cell lines with specific deletion of Acsl1(Acsl1KO cells), suggesting a key role for ACSL1 in fatty acid ß-oxidation. In contrast, tumor necrosis factor-α treatment significantly increased the levels of short-chain acylcarnitines and long-chain fatty acyl CoAs in HK2 cells but not in Acsl1KO cells, consistent with fatty acid channeling to complex lipids. Taken together, our data demonstrate a key role for ACSL1 in regulating lipid metabolism, fatty acid partitioning, and inflammation.
Asunto(s)
Coenzima A Ligasas , Nefropatías Diabéticas , Ácidos Grasos , Animales , Humanos , Ratones , Coenzima A Ligasas/metabolismo , Diabetes Mellitus/patología , Nefropatías Diabéticas/metabolismo , Ácidos Grasos/metabolismo , Ligasas , Palmitatos , Factor de Necrosis Tumoral alfaRESUMEN
Sodium-glucose cotransporter-2 inhibitors (SGLT2 inhibitors) were originally developed as antidiabetic agents, with cardiovascular (CV) outcome trials demonstrating improved CV outcomes in patients with type 2 diabetes mellitus (T2D). Secondary analyses of CV outcome trials and later dedicated kidney outcome trials consistently reported improved kidney-related outcomes independent of T2D status and across a range of kidney function and albuminuria. Importantly, SGLT2 inhibitors are generally safe and well tolerated, with clinical trials and real-world analyses demonstrating a decrease in the risk of acute kidney injury. The kidney protective effects of SGLT2 inhibitors generally extend across different members of the class, possibly on the basis of hemodynamic, metabolic, anti-inflammatory, and antifibrotic mechanisms. In this review, we summarize the effects of SGLT2 inhibitors on kidney outcomes in diverse patient populations.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Enfermedades Cardiovasculares/metabolismo , Riñón/metabolismo , Hipoglucemiantes/uso terapéuticoRESUMEN
The inhibition of the autophagolysosomal pathway mediated by transcription factor EB (TFEB) inactivation in proximal tubular epithelial cells (TECs) is a key mechanism of TEC injury in diabetic kidney disease (DKD). Acetylation is a novel mechanism that regulates TFEB activity. However, there are currently no studies on whether the adjustment of the acetylation level of TFEB can reduce the damage of diabetic TECs. In this study, we investigated the effect of Trichostatin A (TSA), a typical deacetylase inhibitor, on TFEB activity and damage to TECs in both in vivo and in vitro models of DKD. Here, we show that TSA treatment can alleviate the pathological damage of glomeruli and renal tubules and delay the DKD progression in db/db mice, which is associated with the increased expression of TFEB and its downstream genes. In vitro studies further confirmed that TSA treatment can upregulate the acetylation level of TFEB, promote its nuclear translocation, and activate the expression of its downstream genes, thereby reducing the apoptosis level of TECs. TFEB deletion or HDAC6 knockdown in TECs can counteract the activation effect of TSA on autophagolysosomal pathway. We also found that TFEB enhances the transcription of Tfeb through binding to its promoter and promotes its own expression. Our results, thus, provide a novel therapeutic mechanism for DKD that the alleviation of TEC damage by activating the autophagic lysosomal pathway through upregulating TFEB acetylation can, thus, delay DKD progression.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Nefropatías Diabéticas , Células Epiteliales , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Túbulos Renales Proximales , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Nefropatías Diabéticas/metabolismo , Ratones , Acetilación , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ácidos Hidroxámicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Masculino , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
Epigenetic alterations, especially DNA methylation, have been shown to play a role in the pathogenesis of diabetes mellitus (DM) and its complications, including diabetic kidney disease (DKD). Spleen tyrosine kinase (Syk) is known to be involved in immune and inflammatory disorders. We, therefore, investigated the possible involvement of Syk promoter methylation in DKD, and the mechanisms underlying this process. Kidney tissues were obtained from renal biopsies of patients with early and advanced DKD. A diabetic mouse model (ApoE-/- DM) was generated from ApoE knockout (ApoE-/-) mice using a high-fat and high-glucose diet combined with low-dose streptozocin intraperitoneal injection. We also established an in vitro model using HK2 cells. A marked elevation in the expression levels of Syk, PKCß, and P66shc in renal tubules was observed in patients with DKD. In ApoE-/- DM mice, Syk expression and the binding of Sp1 to the Syk gene promoter were both increased in the kidney. In addition, the promoter region of the Syk gene exhibited hypomethylation. Syk inhibitor (R788) intervention improved renal function and alleviated pathologic changes in ApoE-/- DM mice. Moreover, R788 intervention alleviated oxidative stress and apoptosis and downregulated the expression of PKCß/P66shc signaling pathway proteins. In HK2 cells, oxLDL combined with high-glucose stimulation upregulated Sp1 expression in the nucleus (compared with control and oxLDL groups), and this was accompanied by an increase in the binding of Sp1 to the Syk gene promoter. SP1 silencing downregulated the expression of Syk and inhibited the production of reactive oxygen species and cell apoptosis. Finally, PKC agonist intervention reversed the oxidative stress and apoptosis induced by Syk inhibitor (R406). In DKD, hypomethylation at the Syk gene promoter was accompanied by an increase in Sp1 binding at the promoter. As a consequence of this enhanced Sp1 binding, Syk gene expression was upregulated. Syk inhibitors could attenuate DKD-associated oxidative stress and apoptosis via downregulation of PKCß/P66shc signaling pathway proteins. Together, our results identify Syk as a promising target for intervention in DKD.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Quinasa Syk , Animales , Humanos , Ratones , Apoptosis , Nefropatías Diabéticas/genética , Metilación de ADN , Glucosa , Estrés Oxidativo , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Ratones Noqueados para ApoE , Quinasa Syk/genéticaRESUMEN
Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.
Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , Mitocondrias , Podocitos , Animales , Humanos , Masculino , Ratones , Apoptosis , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Glucosa , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Podocitos/metabolismo , Podocitos/patologíaRESUMEN
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismoRESUMEN
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Nefropatías Diabéticas , Podocitos , Proteína Amiloide A Sérica , Animales , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Nefropatías Diabéticas/genética , Glucosa , Inflamación/genética , FN-kappa B , ARN Mensajero/genética , Transducción de Señal , Proteína Amiloide A Sérica/genéticaRESUMEN
Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease, exhibiting high disability and mortality rates. Ferroptosis is vital for the progression of DKD, but the exact mechanism remains unclear. This study aimed to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with the immune and to identify new diagnostic biomarkers to help treat and diagnose DKD. GSE30122 and GSE47185 were obtained from the Gene Expression Omnibus database and were integrated into a merged dataset, followed by functional enrichment analysis. Then potential differentially expressed genes were screened. Ferroptosis-related differentially-expressed genes were identified, followed by gene ontology analysis. Protein-protein interaction networks were constructed and hub genes were screened. The immune cell-infiltrating state in the dataset was assessed using appropriate algorithms. Immune signature subtypes were constructed using the consensus clustering analysis. Hub gene expression was validated using qRT-PCR and immunohistochemistry. A total of Eleven screened ferroptosis-related differentially expressed genes were screened. Six potentially diagnostically favorable ferroptosis-related hub genes were identified. Significantly increased expression of γδT cells, resting mast cells, and macrophages infiltration was observed in the DKD group. Additionally, two distinct immune signature subgroups were identified. Ferroptosis-related hub genes were significantly correlated with differentially infiltrated immune cells. Six hub genes were significantly upregulated in HK-2 cells following high glucose treatment and in human kidney tissues of patients with DKD. Six ferroptosis-related hub genes were identified as potential biomarkers of diabetic kidney disease, but further validation is needed.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Humanos , Nefropatías Diabéticas/genética , Ferroptosis/genética , Marcadores Genéticos , Riñón , Biología ComputacionalRESUMEN
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Asunto(s)
Nefropatías Diabéticas , Glucosa , Túbulos Renales Proximales , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfohidrolasa PTEN , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Regulación hacia Abajo/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de SeñalRESUMEN
Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.
Asunto(s)
Nefropatías Diabéticas , Células Endoteliales , Glicoproteínas , Glomérulos Renales , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células Endoteliales/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Diabetes Mellitus Experimental/metabolismo , Humanos , Podocitos/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión GénicaRESUMEN
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
Asunto(s)
Nefropatías Diabéticas , Proteína HMGB1 , Células Mesangiales , FN-kappa B , Transducción de Señal , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , FN-kappa B/metabolismo , Masculino , Proliferación Celular , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Citosol/metabolismo , Humanos , Inflamación/patología , Inflamación/metabolismoRESUMEN
The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Metabolismo de los Lípidos , Mitocondrias , Estrés Oxidativo , Células Epiteliales , Glucosa , LípidosRESUMEN
AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease in the USA and worldwide. Animal models have taught us much about DKD mechanisms, but translation of this knowledge into treatments for human disease has been slowed by the lag in our molecular understanding of human DKD. METHODS: Using our Spatial TissuE Proteomics (STEP) pipeline (comprising curated human kidney tissues, multiplexed immunofluorescence and powerful analysis tools), we imaged and analysed the expression of 21 proteins in 23 tissue sections from individuals with diabetes and healthy kidneys (n=5), compared to those with DKDIIA, IIA-B and IIB (n=2 each) and DKDIII (n=1). RESULTS: These analyses revealed the existence of 11 cellular clusters (kidney compartments/cell types): podocytes, glomerular endothelial cells, proximal tubules, distal nephron, peritubular capillaries, blood vessels (endothelial cells and vascular smooth muscle cells), macrophages, myeloid cells, other CD45+ inflammatory cells, basement membrane and the interstitium. DKD progression was associated with co-localised increases in inflammatory cells and collagen IV deposition, with concomitant loss of native proteins of each nephron segment. Cell-type frequency and neighbourhood analyses highlighted a significant increase in inflammatory cells and their adjacency to tubular and αSMA+ (α-smooth muscle actin-positive) cells in DKD. Finally, DKD progression showed marked regional variability within single tissue sections, as well as inter-individual variability within each DKD class. CONCLUSIONS/INTERPRETATION: Using the STEP pipeline, we found alterations in protein expression, cellular phenotypic composition and microenvironment structure with DKD progression, demonstrating the power of this pipeline to reveal the pathophysiology of human DKD.
Asunto(s)
Nefropatías Diabéticas , Proteómica , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteómica/métodos , Masculino , Riñón/metabolismo , Riñón/patología , Femenino , Persona de Mediana Edad , Podocitos/metabolismo , Podocitos/patologíaRESUMEN
AIMS/HYPOTHESIS: Glomerular lipid accumulation is a defining feature of diabetic kidney disease (DKD); however, the precise underlying mechanism requires further elucidation. Recent evidence suggests a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) in intracellular lipid homeostasis. Although PCSK9 is present in kidneys, its role within kidney cells and relevance to renal diseases remain largely unexplored. Therefore, we investigated the role of intracellular PCSK9 in regulating lipid accumulation and homeostasis in the glomeruli and podocytes under diabetic conditions. Furthermore, we aimed to identify the pathophysiological mechanisms responsible for the podocyte injury that is associated with intracellular PCSK9-induced lipid accumulation in DKD. METHODS: In this study, glomeruli were isolated from human kidney biopsy tissues, and glomerular gene-expression analysis was performed. Also, db/db and db/m mice were used to perform glomerular gene-expression profiling. We generated DKD models using a high-fat diet and low-dose intraperitoneal streptozocin injection in C57BL/6 and Pcsk9 knockout (KO) mice. We analysed cholesterol and triacylglycerol levels within the kidney cortex. Lipid droplets were evaluated using BODIPY staining. We induced upregulation and downregulation of PCSK9 expression in conditionally immortalised mouse podocytes using lentivirus and siRNA transfection techniques, respectively, under diabetic conditions. RESULTS: A significant reduction in transcription level of PCSK9 was observed in glomeruli of individuals with DKD. PCSK9 expression was also reduced in podocytes of animals under diabetic conditions. We observed significantly higher lipid accumulation in kidney tissues of Pcsk9 KO DKD mice compared with wild-type (WT) DKD mice. Additionally, Pcsk9 KO mouse models of DKD exhibited a significant reduction in mitochondria number vs WT models, coupled with a significant increase in mitochondrial size. Moreover, albuminuria and podocyte foot process effacement were observed in WT and Pcsk9 KO DKD mice, with KO DKD mice displaying more pronounced manifestations. Immortalised mouse podocytes exposed to diabetic stimuli exhibited heightened intracellular lipid accumulation, mitochondrial injury and apoptosis, which were ameliorated by Pcsk9 overexpression and aggravated by Pcsk9 knockdown in mouse podocytes. CONCLUSIONS/INTERPRETATION: The downregulation of PCSK9 in podocytes is associated with lipid accumulation, which leads to mitochondrial dysfunction, cell apoptosis and renal injury. This study sheds new light on the potential involvement of PCSK9 in the pathophysiology of glomerular lipid accumulation and podocyte injury in DKD.
Asunto(s)
Nefropatías Diabéticas , Glomérulos Renales , Metabolismo de los Lípidos , Podocitos , Proproteína Convertasa 9 , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Metabolismo de los Lípidos/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/metabolismo , Podocitos/patología , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genéticaRESUMEN
AIMS/HYPOTHESIS: Non-adherence to medication is a frequent barrier in the treatment of patients with type 2 diabetes mellitus, potentially limiting the effectiveness of evidence-based treatments. Previous studies have mostly relied on indirect adherence measures to analyse outcomes based on adherence. The aim of this study was to use LC-MS/MS in urine-a non-invasive, direct and objective measure-to assess non-adherence to cardiometabolic drugs and analyse its association with kidney and cardiovascular outcomes. METHODS: This cohort study includes 1125 participants from the PROVALID study, which follows patients with type 2 diabetes mellitus at the primary care level. Baseline urine samples were tested for 79 cardiometabolic drugs and metabolites thereof via LC-MS/MS. An individual was classified as totally adherent if markers for all drugs were detected, partially non-adherent when at least one marker for one drug was detected, and totally non-adherent if no markers for any drugs were detected. Non-adherence was then analysed in the context of cardiovascular (composite of myocardial infarction, stroke and cardiovascular death) and kidney (composite of sustained 40% decline in eGFR, sustained progression of albuminuria, kidney replacement therapy and death from kidney failure) outcomes. RESULTS: Of the participants, 56.3% were totally adherent, 42.0% were partially non-adherent, and 1.7% were totally non-adherent to screened cardiometabolic drugs. Adherence was highest to antiplatelet and glucose-lowering agents and lowest to lipid-lowering agents. Over a median (IQR) follow-up time of 5.10 (4.12-6.12) years, worse cardiovascular outcomes were observed with non-adherence to antiplatelet drugs (HR 10.13 [95% CI 3.06, 33.56]) and worse kidney outcomes were observed with non-adherence to antihypertensive drugs (HR 1.98 [95% CI 1.37, 2.86]). CONCLUSIONS/INTERPRETATION: This analysis shows that non-adherence to cardiometabolic drug regimens is common in type 2 diabetes mellitus and negatively affects kidney and cardiovascular outcomes.
Asunto(s)
Diabetes Mellitus Tipo 2 , Cumplimiento de la Medicación , Espectrometría de Masas en Tándem , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/orina , Masculino , Femenino , Persona de Mediana Edad , Anciano , Cromatografía Liquida/métodos , Enfermedades Cardiovasculares/orina , Enfermedades Cardiovasculares/tratamiento farmacológico , Estudios de Cohortes , Riñón/metabolismo , Riñón/fisiopatología , Riñón/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Cromatografía Líquida con Espectrometría de MasasRESUMEN
AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD. METHODS: We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters and enhancers using the WGS dataset. RESULTS: In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated common THAP7 rs369250 variant (p=1.50 × 10-5, MAF=49%) was replicated in the FinnGen general population genome-wide association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided suggestive evidence (p<4.0 × 10-4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFß, MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 × 10-5, MAFvariants≤5%) showed interaction with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor. CONCLUSIONS/INTERPRETATION: Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further studies are needed to validate the findings.
Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Secuenciación del Exoma , Secuenciación Completa del Genoma , Humanos , Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/genética , Femenino , Masculino , Adulto , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple/genética , Exoma/genéticaRESUMEN
AIMS/HYPOTHESIS: The aim of this study was to describe the metabolome in diabetic kidney disease (DKD) and its association with incident CVD in type 2 diabetes, and identify prognostic biomarkers. METHODS: From a prospective cohort of individuals with type 2 diabetes, baseline sera (N=1991) were quantified for 170 metabolites using NMR spectroscopy with median 5.2 years of follow-up. Associations of chronic kidney disease (CKD, eGFR<60 ml/min per 1.73 m2) or severely increased albuminuria with each metabolite were examined using linear regression, adjusted for confounders and multiplicity. Associations between DKD (CKD or severely increased albuminuria)-related metabolites and incident CVD were examined using Cox regressions. Metabolomic biomarkers were identified and assessed for CVD prediction and replicated in two independent cohorts. RESULTS: At false discovery rate (FDR)<0.05, 156 metabolites were associated with DKD (151 for CKD and 128 for severely increased albuminuria), including apolipoprotein B-containing lipoproteins, HDL, fatty acids, phenylalanine, tyrosine, albumin and glycoprotein acetyls. Over 5.2 years of follow-up, 75 metabolites were associated with incident CVD at FDR<0.05. A model comprising age, sex and three metabolites (albumin, triglycerides in large HDL and phospholipids in small LDL) performed comparably to conventional risk factors (C statistic 0.765 vs 0.762, p=0.893) and adding the three metabolites further improved CVD prediction (C statistic from 0.762 to 0.797, p=0.014) and improved discrimination and reclassification. The 3-metabolite score was validated in independent Chinese and Dutch cohorts. CONCLUSIONS/INTERPRETATION: Altered metabolomic signatures in DKD are associated with incident CVD and improve CVD risk stratification.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Humanos , Nefropatías Diabéticas/metabolismo , Enfermedades Cardiovasculares/complicaciones , Estudios Prospectivos , Hong Kong/epidemiología , Albuminuria , Bancos de Muestras Biológicas , Tasa de Filtración Glomerular , Biomarcadores , AlbúminasRESUMEN
AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.
Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Humanos , Femenino , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Reprogramación Metabólica , Proteínas Quinasas Activadas por AMP/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Estivación , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo , Riñón/metabolismo , Ayuno , Serina-Treonina Quinasas TOR/metabolismo , Glicina/metabolismo , Mamíferos/metabolismoRESUMEN
Diabetic kidney disease (DKD), a primary microvascular complication arising from diabetes, may result in end-stage renal disease. Epigenetic regulation of endothelial mesenchymal transition (EndMT) has been recently reported to exert function in metabolic memory and DKD. Here, we investigated the mechanism which Sirt7 modulated EndMT in human glomerular endothelial cells (HGECs) in the occurrence of metabolic memory in DKD. Lower levels of SDC1 and Sirt7 were noted in the glomeruli of both DKD patients and diabetes-induced renal injury rats, as well as in human glomerular endothelial cells (HGECs) with high blood sugar. Endothelial-to-mesenchymal transition (EndMT) was sustained despite the normalization of glycaemic control. We also found that Sirt7 overexpression associated with glucose normalization promoted the SDC1 expression and reversed EndMT in HGECs. Furthermore, the sh-Sirt7-mediated EndMT could be reversed by SDC1 overexpression. The ChIP assay revealed enrichment of Sirt7 and H3K18ac in the SDC1 promoter region. Furthermore, hypermethylated in cancer 1 (HIC1) was found to be associated with Sirt7. Overexpression of HIC1 with normoglycaemia reversed high glucose-mediated EndMT in HGECs. The knockdown of HIC1-mediated EndMT was reversed by SDC1 upregulation. In addition, the enrichment of HIC1 and Sirt7 was observed in the same promoter region of SDC1. The overexpressed Sirt7 reversed EndMT and improved renal function in insulin-treated diabetic models. This study demonstrated that the hyperglycaemia-mediated interaction between Sirt7 and HIC1 exerts a role in the metabolic memory in DKD by inactivating SDC1 transcription and mediating EndMT despite glucose normalization in HGECs.