Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Small ; 20(12): e2307557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946707

RESUMEN

Although zinc metal anode is promising for zinc-ion batteries (ZIBs) owing to high energy density, its reversibility is significantly obstructed by uncontrolled dendrite growth and parasitic reactions. Optimizing electrolytes is a facile yet effective method to simultaneously address these issues. Herein, 2-(N-morpholino)ethanesulfonic acid (MES), a pH buffer as novel additive, is initially introduced into conventional ZnSO4 electrolyte to ensure a dendrite-free zinc anode surface, enabling a stable Zn/electrolyte interface, which is achieved by controlling the solvated sheath through H2O poor electric double layer (EDL) derived from zwitterionic groups. Moreover, this zwitterionic additive can balance localized H+ concentration of the electrolyte system, thus preventing parasitic reactions in damaging electrodes. DFT calculation proves that the MES additive has a strong affinity with Zn2+ and induces uniform deposition along (002) orientation. As a result, the Zn anode in MES-based electrolyte exhibits exceptional plating/stripping lifespan with 1600 h at 0.5 mA cm-2 (0.5 mAh cm-2) and 430 h at 5.0 mA cm-2 (5.0 mAh cm-2) while it maintains high coulombic efficiency of 99.8%. This work proposes an effective and facile approach for designing dendrite-free anode for future aqueous Zn-based storage devices.

2.
Small ; 20(40): e2401589, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38567494

RESUMEN

Despite possessing substantial benefits of enhanced safety and cost-effectiveness, the aqueous zinc ion batteries (AZIBs) still suffers with the critical challenges induced by inherent instability of Zn metal in aqueous electrolytes. Zn dendrites, surface passivation, and corrosion are some of the key challenges governed by water-driven side reactions in Zn anodes. Herein, a highly reversible Zn anode is demonstrated via interfacial engineering of Zn/electrolyte driven by amino acid D-Phenylalanine (DPA) additions. The preferential adsorption of DPA and the development of compact SEI on the Zn anode suppressed the side reactions, leading to controlled and uniform Zn deposition. As a result, DPA added aqueous electrolyte stabilized Zn anode under severe test environments of 20.0 mA cm-2 and 10.0 mAh cm-2 along with an average plating/stripping Coulombic efficiency of 99.37%. Under multiple testing conditions, the DPA-incorporated electrolyte outperforms the control group electrolyte, revealing the critical additive impact on Zn anode stability. This study advances interfacial engineering through versatile electrolyte additive(s) toward development of stable Zn anode, which may lead to its practical implementation in aqueous rechargeable zinc batteries.

3.
Small ; : e2406635, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340283

RESUMEN

Aqueous zinc ion batteries (AZIBs) stand out from the crowd of energy storage equipment for their superior energy density, enhanced safety features, and affordability. However, the notorious side reaction in the zinc anode and the dissolution of the cathode materials led to poor cycling stability has hindered their further development. Herein, ammonium salicylate (AS) is a bidirectional electrolyte additive to promote prolonged stable cycles in AZIBs. NH4 + and C6H4OHCOO- collaboratively stabilize the pH at the interface of the electrolyte/electrode and guide the homogeneous deposition of Zn2+ at the zinc anode. The higher adsorption energy of NH4 + compared to H2O on the Zn (002) crystal plane mitigates the side reactions on the anode surface. Moreover, NH4 + is similarly adsorbed on the cathode surface, maintaining the stability of the electrode. C6H4OHCOO- and Zn2+ are co-intercalation/deintercalation during the cycling process, contributing to the higher electrochemical performance of the full cell. As a result, with the presence of AS additive, the Zn//Zn symmetric cells achieved 700 h of highly reversible cycling at 5 mA cm-2. In addition, the assembled NH4V4O10(NVO)//Zn coin and pouch batteries achieved higher capacity and higher cycle lifetime, demonstrating the practicality of the AS electrolyte additive.

4.
Small ; : e2404367, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344599

RESUMEN

Aqueous zinc-ion batteries (AZIBs) stand out among new energy storage devices due to their excellent safety and environmental friendliness. However, the formation of dendrites and side reactions on the zinc metal anode during cycling have become the major obstacles to their commercialization. This study innovatively selected Sodium 4-vinylbenzenesulfonate (VBS) as a multifunctional electrolyte additive to address the issues. The dissociated VBS- anions can not only significantly alter the hydrogen bond network structure of H2O in the electrolyte, but also preferentially adsorb on the surface of the zinc anode before H2O molecules, which will result in the development of organic anion-rich interface and alterations to the electrical double layer (EDL) structure. Furthermore, the ─C═C─ structure in VBS leads to the formation of an in situ polymerized organic anion solid electrolyte interface (SEI) layer that adheres to the surface of the zinc anode. The mechanisms work together to significantly improve the performance of Zn//Zn symmetric batteries, achieving a cycle life of over 1800 h at 1 mA cm-2 and 1 mAh cm-2. The introduction of VBS also enhances the cycling performance and capacity of Zn//δ-MnO2 full cells. This study provides a low-cost solution for the development of AZIBs.

5.
Small ; : e2404368, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016129

RESUMEN

Mildly-acidic MnO2-Zn batteries are considered as a promising alternative for large-scale energy storage systems for their low toxicity, high safety, and low cost. Though, the degradation of MnO2 with cycling still hinders the further development of the batteries. In this study, it is observed that the decrease in available capacity of MnO2 with charge and discharge is accompanied by a structural transformation with the emergence of Zn─Mn─O phases. An electrodeposition test indicates that the Zn─Mn─O phase is formed from a co-precipitation of Zn and Mn during the charge process. Further, the structural change of MnO2 is suppressed and its cycle stability is improved with the addition of TiOSO4 as a facile electrolyte additive. As a result, under a current of 1200 mA g-1, the MnO2 electrode still gives a capacity of 230 mAh g-1 for over 1500 cycles. Capacity retention is 75% after 10 000 cycles under a current rate of 4800 mA g-1. These findings provide fundamental insights on the degradation mechanism of MnO2 and a new strategy to improve the electrochemical performance of aqueous MnO2-Zn batteries.

6.
Small ; 20(30): e2309890, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38420897

RESUMEN

Lithium-sulfur (Li-S) battery is of great potential for the next generation energy storage device due to the high specific capacity energy density. However, the sluggish kinetics of S redox and the dendrite Li growth are the main challenges to hinder its commercial application. Herein, an organic electrolyte additive, i.e., benzyl chloride (BzCl), is applied as the remedy to address the two issues. In detail, BzCl can split into Bz· radical to react with the polysulfides, forming a Bz-S-Bz intermediate, which changes the conversion path of S and improves the kinetics by accelerating the S splitting. Meanwhile, a tight and robust solid electrolyte interphase (SEI) rich in inorganic ingredients namely LiCl, LiF, and Li2O, is formed on the surface of Li metal, accelerating the ion conductivity and blocking the decomposition of the solvent and lithium polysulfides. Therefore, the Li-S battery with BzCl as the additive remains high capacity of 693.2 mAh g-1 after 220 cycles at 0.5 C with a low decay rate of 0.11%. This work provides a novel strategy to boost the electrochemical performances in both cathode and anode and gives a guide on the electrolyte design toward high-performance Li-S batteries.

7.
Small ; : e2405143, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136203

RESUMEN

Lithium metal batteries (LMBs) have been recognized as high-energy storage alternatives; however, problematic surface reactions due to dendritic Li growth are major obstacles to their widespread utilization. Herein, a 3-mercapto-1-propanesulfonic acid sodium salt (MPS) with asymmetrically functionalized thiol and sulfonate groups as polarizable interface-restructuring molecules is proposed to achieve rapid and longer-operating LMBs. Under a harsh condition of 5 mA cm-2, Li-Li symmetric cells employing MPS can be cycled over 1200 cycles, outperforming those employing other molecules symmetrically functionalized by thiol or sulfonate groups. The improved performance of the Li|V2O5 full cell is demonstrated by introducing MPS additives. MPS additives offer advantages by flattening the surface, reconfiguring Li nucleation and growth along the stable (110) plane, and forming a durable and conductive solid-electrolyte interface layer (SEI). This study suggests an effective way to develop a new class of electrolyte additives for LMBs by controlling engineering factors, such as functional groups and polarizable properties.

8.
Small ; 20(32): e2311961, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461546

RESUMEN

Optimizing the electrode/electrolyte interface structure is the key to realizing high-voltage Li-metal batteries (LMBs). Herein, a functional electrolyte is introduced to synergetically regulate the interface layer structures on the high-voltage cathode and the Li-metal anode. Saccharin sodium (NaSH) as a multifunctional electrolyte additive is employed in fluorinated solvent-based electrolyte (FBE) for robust interphase layer construction. On the one hand, combining the results of ex-situ techniques and in-situ electrochemical dissipative quartz crystal microbalance (EQCM-D) technique, it can be seen that the solid electrolyte interface (SEI) layer constructed by NaSH-coupled fluoroethylene carbonate (FEC) on Li-metal anode significantly inhibits the growth of lithium dendrites and improves the cyclic stability of the anode. On the other hand, the experimental results also confirm that the cathode-electrolyte interface (CEI) layer induced by NaSH-coupled FEC effectively protects the active materials of LiCoO2 and improves their structural stability under high-voltage cycling, thus avoiding the material rupture. Moreover, theoretical calculation results show that the addition of NaSH alters the desolvation behavior of Li+ and enhances the transport kinetics of Li+ at the electrode/electrolyte interface. In this contribution, the LiCoO2ǁLi full cell containing FBE+NaSH results in a high capacity retention of 80% after 530 cycles with a coulombic efficiency of 99.8%.

9.
Small ; 20(34): e2400365, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38644295

RESUMEN

LiPF6-based carbonate electrolytes have been extensively employed in commercial Li-ion batteries, but they face numerous interfacial stability challenges while applicating in high-energy-density lithium-metal batteries (LMBs). Herein, this work proposes N-succinimidyl trifluoroacetate (NST) as a multifunctional electrolyte additive to address these challenges. NST additive could optimize Li+ solvation structure and eliminate HF/H2O in the electrolyte, and preferentially be decomposed on the Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2, NCM811) to generate LiF/Li3N-rich cathode-electrolyte interphase (CEI) with high conductivity. The synergistic effect reduces the electrolyte decomposition and inhibits the transition metal (TM) dissolution. Meanwhile, NST promotes the creation of solid electrolyte interphase (SEI) rich in inorganics on the Li metal anode (LMA), which restrains the growth of Li dendrites, minimizes parasitic reactions, and fosters rapid Li+ transport. As a result, compared with the reference, the Li/LiNi0.8Co0.1Mn0.1O2 cell with 1.0 wt.% NST exhibits higher capacity retention after 200 cycles at 1C (86.4% vs. 64.8%) and better rate performance, even at 9C. In the presence of NST, the Li/Li symmetrical cell shows a super-stable cyclic performance beyond 500 h at 0.5 mA cm-2/0.5 mAh cm-2. These unique features of NST are a promising solution for addressing the interfacial deterioration issue of high-capacity Ni-rich cathodes paired with LMA.

10.
Small ; : e2405853, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268789

RESUMEN

Building a stable cathode-electrolyte interface (CEI) is crucial for achieving high-performance layered metal oxide cathode materials LiNixCoyMn1-x-yO2 (NCM). In this work, a novel 4-fluorobenzene isocyanate (4-FBC) electrolyte additive that contains isocyanate and benzene ring functional groups is proposed, which can form robust and homogeneous N-rich and benzene ring skeleton CEI film on the cathode surface, leading to significant improvement in the electrochemical performance of lithium-ion batteries. Taking LiNi0.5Co0.2Mn0.3O2 (NCM523) as an example, the NCM523/SiO@Graphite pouch full cells with electrolytes containing a mass fraction of 1% 4-FBC additives demonstrate improved capacity retention after 200 cycles, retaining capacity retention rates of 81.3%, which is much higher than that of 39.1% without additive. The improvement can be ascribed to the mitigation of electrolyte decomposition and inhibition of transition metal ions the dissolution from the cathode material due to the stable CEI film. Moreover, the electrochemical performance enhancement can also be achieved in high voltage and Ni-rich cathode materials, indicating the universality and effectiveness of this strategy for the practical applications of high energy density lithium-ion batteries.

11.
Small ; : e2404237, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036857

RESUMEN

The development of Zn-ion batteries (ZIBs) is always hindered by the ruleless interface reactions between the solid electrode and liquid electrolyte, and seeking appropriate electrolyte additives is considered as a valid approach to stabilize the electrode/electrolyte interphases for high-performance ZIBs. Benefiting from the unique solubility of TiOSO4 in acidic solution, the composite electrolyte of 2 m ZnSO4+30 mm TiOSO4 (ZSO/TSO) is configured and its positive contribution to Zn//Zn cells, Zn//Cu cells, and Zn//NH4V4O10 batteries are comprehensively investigated by electrochemical tests and theoretical calculations. Based on the theoretical calculations, the introduction of TiOSO4 contributes to facilitating the desolvation kinetics of Zn2+ ions and guarantees the stable interface reactions of both zinc anode and NH4V4O10 cathode. As expected, Zn//Zn cells keep long-term cycling behavior for 3750 h under the test condition of 1 mA cm-2-1 mAh cm-2, Zn//Cu cells deliver high Coulombic efficiency of 99.9% for 1000 cycles under the test condition of 5 mA cm-2-1 mAh cm-2, and Zn//NH4V4O10 batteries maintain reversible specific capacity of 193.8 mAh g-1 after 1700 cycles at 5 A g-1 in ZSO/TSO electrolyte. These satisfactory results manifest that TiOSO4 additive holds great potential to improve the performances of ZIBs.

12.
Small ; : e2406871, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363794

RESUMEN

Aqueous zinc-ion batteries (AZIBs) with slightly acidic electrolytes process advantages such as high safety, competitive cost, and satisfactory electrochemical performance. However, the failure behaviors of both electrodes, regarding zinc dendrite growth, interfacial parasitic reactions, and the collapse of cathode materials hinder the practical application of ZIBs. To alleviate the issues of both anode and cathode at the same time, D-xylose (DX) is introduced to the electrolyte as a multifunctional additive. As a result, the side reaction of the anode is suppressed and the metallic deposition behavior is regulated due to the hydrogen bonding network reconstruction and preferential surface adsorption of DX; for the MnO2 cathode, the DX adsorption can help the interfacial charge transfer and increase the reactive sites. Benefiting from these merits, DX-optimized Zn//Zn battery displays reveal a prolonged lifespan of 6912 h and an ultra-high cumulative capacity of 17.28 Ah cm-2 at 5 mA cm-2. With the function of water reactivity suppression, the Coulombic efficiency reaches 99.91% at 2 mA cm-2; the Zn||MnO2 full batteries exhibit excellent cyclability over 2000 cycles at 5C with an increased capacity of 118.9 mAh g-1, indicating the dual functions to both of the electrodes for AZIBs.

13.
Small ; : e2408132, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39434475

RESUMEN

As insertion-type cathode materials of aqueous Zn-based batteries (ABs), bismuth chalcogenides/oxychalcogenides exhibits relatively limited capacities in ZnSO4 baseline electrolyte. This work finds that Bi2TeO5 (BTO) cathode with pre-added I- electrolyte additive can simultaneously achieve conversion and insertion chemistries, which enables aqueous BTO-Zn batteries to deliver an extraordinary electrochemical performance. As shown in the experiment results, the BTO cathode showcases an ultrahigh specific capacity of 534.9 mA h g-1 at 0.5 A g-1, excellent rate capability (237.3 mA h g-1 at 10 A g-1). In the estimation of cyclic durability, the capacity of the BTO cathode decreases from 271.2 to 171.1 mA h g-1 during 2000 cycles at 10 A g-1.

14.
Small ; 20(14): e2308678, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990362

RESUMEN

Lithium (Li) metal is regarded as a potential candidate for the next generation of lithium secondary batteries, but it has poor cycling stability with the broadly used carbonate-based electrolytes due to the uncontrollable dendritic growth and low Coulombic efficiency (CE). LiNO3 is an effective additive and its limited solubility (<800 ppm) in carbonate-based electrolytes is still a challenge, as reported. Herein, using BF3 (Lewis acid) is proposed to enhance the solubility of LiNO3 in carbonate-based electrolytes. The dissolved NO3 - can be involved in the first solvation shell of Li+, reducing the coordination number of PF6 - and EC (ethylene carbonate). In addition, the NO3 - is proved to be preferentially reduced on Li metal by differential electrochemical mass spectrometry so that the decomposition of PF6 - and EC is suppressed. Therefore, a SEI layer containing Li3N can be obtained, which exhibits high lithium-ion conductivity, achieving even and dense Li deposits. Consequently, the CE of Li||Cu cell with BF3/LiNO3 can be increased to 98.07%. Moreover, the capacity retention of Li||LiFePO4 with a low N/P ratio (3:1) is as high as 90% after 300 cycles (≈1500 h). This work paved a new way for incorporating LiNO3 into carbonate-based electrolytes and high-performance lithium metal batteries.

15.
Small ; 20(25): e2309871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299765

RESUMEN

Owing to the outstanding comprehensive properties of high energy density, excellent cycling ability, and reasonable cost, Ni-rich layered oxides (NCM) are the most promising cathode for lithium-ion batteries (LIBs). To further enhance the specific capacity of Ni-rich layered oxides, it is necessary to increase the cut-off voltage to a higher level. However, a higher cut-off voltage can lead to substantial structural changes and trigger interface side reactions, presenting significant challenges for practical applications (cycle life and safety). Herein, to solve above issues, tris(hexafluoroisopropyl)borate (TFPB) is introduced as a high voltage electrolyte additive for LiNi0.90Co0.06Mn0.04O2 cathode. Based on detail in situ/ex situ characterization, this study proves that TFPB forms a protective solid-state interphase (SEI) layer on the Li-anode. Additionally, derivatives of TFPB are easily oxidatively decomposed to create a dense cathode electrolyte interphase (CEI) film on the cathode. This CEI film effectively prevents the continuous oxidation of the electrolyte and mitigates the adverse effects of HF on the battery. Benefit from the protective SEI and CEI layer, the LiNi0.90Co0.06Mn0.04O2||Li battery with a TFPB-containing electrolyte maintains an unprecedented level of performance, with a capacity retention of 89.1% after 100 cycles under the ultrahigh cut-off voltage of 4.6 V (vs Li/Li+).

16.
Chemistry ; : e202402558, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158512

RESUMEN

The high electrochemical reactivity of H2O molecules and zinc metal results in severe side reactions and dendrite formation on zinc anodes. Here we demonstrate that these issues can be addressed by using N-hydroxymethylacetamide (NHA) as additives in 2 M ZnSO4 electrolytes. The addition of NHA molecules, acting as both a hydrogen bond donor and acceptor, enables the formation of cyclic hydrogen bonding with H2O molecules. This interaction disrupts the existing hydrogen bonding networks between H2O molecules, hindering proton transport, and containing H2O molecules within the cyclic hydrogen bonding structure to prevent deprotonation. Additionally, NHA molecules show a preference for adsorption on the (101) crystal surface of zinc metal. This preferential adsorption reduces the surface energy of the (101) plane, facilitating the homogeneous Zn deposition along the (101) direction. Thus, the NHA enables Zn||Zn symmetric cell with a cycle lifespan of 1100 hours at 5 mA cm-2 and Zn||Cu asymmetric cell with a high Coulombic efficiency over 99.5 %. Moreover, the NHA-modified Zn||AC zinc ion hybrid capacitor is capable of sustaining 15000 cycles at 2 A g-1. This electrolyte additive engineering presents a promising strategy to enhance the performance and broaden the application potential of zinc metal-based energy storage devices.

17.
Chemistry ; 30(18): e202303741, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38206884

RESUMEN

Compared with Li+, Na+ with a smaller stokes radius has faster de-solvation kinetics. An electrolyte with ultralow sodium salt (0.3 M NaPF6) is used to reduce the cell cost. However, the organic-dominated interface, mainly derived from decomposed solvents (SSIP solvation structure), is defective for the long cycling performance of sodium ion batteries. In this work, the simple application of dual additives, including sodium difluoro(oxalato)borate (NaDFOB) and tris(trimethylsilyl)borate (TMSB), is demonstrated to improve the cycling performance of the hard carbon/NaNi1/3Fe1/3Mn1/3O2 cell by constructing interface films on the anode and cathode. A significant improvement on cycling stability has been achieved by incorporating dual additives of NaDFOB and TMSB. Particularly, the capacity retention increased from 17 % (baseline) to 79 % (w/w, 2.0 wt % NaDFOB) and 83 % (w/w, 2.0 wt % NaDFOB and 1.0 wt % TMSB) after 200 cycles at room temperature. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in ultralow concentration electrolyte has been investigated through a combination of theoretical computation and experimental techniques.

18.
Molecules ; 29(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064994

RESUMEN

Electrolyte additive engineering is a crucial method for enhancing the performance of aqueous zinc-ion batteries (AZIBs). Recently, most research predominantly focuses on the role of functional groups in regulating electrolytes, often overlooking the impact of molecule stereoscopic configuration. Herein, two isomeric sugar alcohols, mannitol and sorbitol, are employed as electrolyte additives to investigate the impact of the stereoscopic configuration of additives on the ZnSO4 electrolyte. Experimental analysis and theoretical calculations reveal that the primary factor for improving Zn anode performance is the regulation of the solvation sheath by these additives. Among the isomers, mannitol exhibits stronger binding energies with Zn2+ ions and water molecules due to its more suitable stereoscopic configuration. These enhanced bindings allow mannitol to coordinate with Zn2+, contributing to solvation structure formation and reducing the active H2O molecules in the bulk electrolyte, resulting in suppressed parasitic reactions and inhibited dendritic growth. As a result, the zinc electrodes in mannitol-modified electrolyte exhibit excellent cycling stability of 1600 h at 1 mA cm-2 and 900 h at 10 mA cm-2, respectively. Hence, this study provides novel insights into the importance of suitable stereoscopic molecule configurations in the design of electrolyte additives for highly reversible and high-rate Zn anodes.

19.
Angew Chem Int Ed Engl ; 63(18): e202402327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38467561

RESUMEN

Metallic zinc is a promising anode material for rechargeable aqueous multivalent metal-ion batteries due to its high capacity and low cost. However, the practical use is always beset by severe dendrite growth and parasitic side reactions occurring at anode/electrolyte interface. Here we demonstrate dynamic molecular interphases caused by trace dual electrolyte additives of D-mannose and sodium lignosulfonate for ultralong-lifespan and dendrite-free zinc anode. Triggered by plating and stripping electric fields, the D-mannose and lignosulfonate species are alternately and reversibly (de-)adsorbed on Zn metal, respectively, to accelerate Zn2+ transportation for uniform Zn nucleation and deposition and inhibit side reactions for high Coulombic efficiency. As a result, Zn anode in such dual-additive electrolyte exhibits highly reversible and dendrite-free Zn stripping/plating behaviors for >6400 hours at 1 mA cm-2, which enables long-term cycling stability of Zn||ZnxMnO2 full cell for more than 2000 cycles.

20.
Angew Chem Int Ed Engl ; 63(5): e202315710, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078788

RESUMEN

High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA