Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2310933120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060566

RESUMEN

Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Canales Iónicos , Canales Iónicos/metabolismo , Descubrimiento de Drogas , Sitios de Unión , Termodinámica , Mecanotransducción Celular/fisiología
2.
Proc Natl Acad Sci U S A ; 119(10): e2109420119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235453

RESUMEN

SignificanceMonte Carlo methods, tools for sampling data from probability distributions, are widely used in the physical sciences, applied mathematics, and Bayesian statistics. Nevertheless, there are many situations in which it is computationally prohibitive to use Monte Carlo due to slow "mixing" between modes of a distribution unless hand-tuned algorithms are used to accelerate the scheme. Machine learning techniques based on generative models offer a compelling alternative to the challenge of designing efficient schemes for a specific system. Here, we formalize Monte Carlo augmented with normalizing flows and show that, with limited prior data and a physically inspired algorithm, we can substantially accelerate sampling with generative models.

3.
J Comput Chem ; 45(17): 1444-1455, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471815

RESUMEN

In a protein, nearby titratable sites can be coupled: the (de)protonation of one may affect the other. The degree of this interaction depends on several factors and can influence the measured p K a . Here, we derive a formalism based on double free energy differences ( Δ Δ G ) for quantifying the individual site p K a values of coupled residues. As Δ Δ G values can be obtained by means of alchemical free energy calculations, the presented approach allows for a convenient estimation of coupled residue p K a s in practice. We demonstrate that our approach and a previously proposed microscopic p K a formalism, can be combined with alchemical free energy calculations to resolve pH-dependent protein p K a values. Toy models and both, regular and constant-pH molecular dynamics simulations, alongside experimental data, are used to validate this approach. Our results highlight the insights gleaned when coupling and microstate probabilities are analyzed and suggest extensions to more complex enzymatic contexts. Furthermore, we find that naïvely computed p K a values that ignore coupling, can be significantly improved when coupling is accounted for, in some cases reducing the error by half. In short, alchemical free energy methods can resolve the p K a values of both uncoupled and coupled residues.

4.
J Mol Recognit ; 37(2): e3068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968575

RESUMEN

Enzymes are usually stereospecific against chiral substrates, which is commonly accepted for the amine oxidase family of enzymes as well. However, the FsqB (fumisoquin biosynthesis gene B) enzyme that belongs to the family of sarcosine oxidase and oxidizes L-N-methyl-amino acids, shows surprising activity for both enantiomers of N-methyl-dopa. The aim of this study is to understand the mechanism behind this behavior. Primary docking experiments showed that tyrosine and aspartate residues (121 and 315 respectively) are located on the ceiling of the active site of FsqB and may play a role in fixing the N-methyl-dopa via its catechol moiety and allowing both stereoisomers of this substrate to be in close proximity of the N5 atom of the isoalloxazine ring of the cofactor. Three experimental approaches were used to prove this hypothesis which are: (1) studying the oxidative ability of the variants Y121F and D315A on N-methyl-dopa substrates in comparison with N-methyl-tyrosine substrates; (2) studying the FsqB WT and variants catalyzed biotransformation via high-performance liquid chromatography (HPLC); (3) molecular dynamics simulations to characterize the underlying mechanisms of the molecular recognition. First, we found that the chemical characteristics of the catechol moiety of N-methyl-dopa are important to explain the differences between N-methyl-dopa and N-methyl-tyrosine. Furthermore, we found that Y121 and D315 are specific in FsqB and not found in the model enzyme sarcosine oxidase. The on-bench and theoretical mutagenesis studies show that Y121 residue has a major role in fixing the N-methyl-dopa substrates close to the N5 atom of the isoalloxazine ring of the cofactor. Simultaneously, D315 has a supportive role in this mechanism. Jointly, the experimental and theoretical approaches help to solve the riddle of FsqB amine oxidase substrate specificity.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Sarcosina-Oxidasa , Estereoisomerismo , Azoles , Farmacorresistencia Fúngica , Tirosina , Metildopa , Cinética
5.
Arch Biochem Biophys ; 756: 110000, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621442

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of motor neurons, resulting in respiratory failure and mortality within 3-5 years. Mutations in the Angiogenin (ANG) cause loss of ribonucleolytic and nuclear translocation activities, contributing to ALS pathogenesis. This study focused on investigating two uncharacterized ANG mutations, T11S and R122H, newly identified in the Project Mine consortium. Using extensive computational analysis, including structural modeling and microsecond-timescale molecular dynamics (MD) simulations, we observed conformational changes in the catalytic residue His114 of ANG induced by T11S and R122H mutations. These alterations impaired ribonucleolytic activity, as inferred through molecular docking and binding free energy calculations. Gibbs free energy landscape and residue-residue interaction network analysis further supported our findings, revealing the energetic states and allosteric pathway from the mutated site to His114. Additionally, we assessed the binding of NCI-65828, an inhibitor of ribonucleolytic activity of ANG, and found reduced effectiveness in binding to T11S and R122H mutants when His114 assumed a non-native conformation. This highlights the crucial role of His114 and its association with ALS. Elucidating the relationship between physical structure and functional dynamics of frequently mutated ANG mutants is essential for understanding ALS pathogenesis and developing more effective therapeutic interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Simulación de Dinámica Molecular , Ribonucleasa Pancreática , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/genética , Ribonucleasa Pancreática/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Mutación con Pérdida de Función , Simulación del Acoplamiento Molecular , Mutación , Conformación Proteica , Termodinámica
6.
Appl Microbiol Biotechnol ; 108(1): 305, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643427

RESUMEN

Non-equilibrium (NEQ) alchemical free energy calculations are an emerging tool for accurately predicting changes in protein folding free energy resulting from amino acid mutations. In this study, this method in combination with the Rosetta ddg monomer tool was applied to predict more thermostable variants of the polyethylene terephthalate (PET) degrading enzyme DuraPETase. The Rosetta ddg monomer tool efficiently enriched promising mutations prior to more accurate prediction by NEQ alchemical free energy calculations. The relative change in folding free energy of 96 single amino acid mutations was calculated by NEQ alchemical free energy calculation. Experimental validation of ten of the highest scoring variants identified two mutations (DuraPETaseS61M and DuraPETaseS223Y) that increased the melting temperature (Tm) of the enzyme by up to 1 °C. The calculated relative change in folding free energy showed an excellent correlation with experimentally determined Tm resulting in a Pearson's correlation coefficient of r = - 0.84. Limitations in the prediction of strongly stabilizing mutations were, however, encountered and are discussed. Despite these challenges, this study demonstrates the practical applicability of NEQ alchemical free energy calculations in prospective enzyme engineering projects. KEY POINTS: • Rosetta ddg monomer enriches stabilizing mutations in a library of DuraPETase variants • NEQ free energy calculations accurately predict changes in Tm of DuraPETase • The DuraPETase variants S223Y, S42M, and S61M have increased Tm.


Asunto(s)
Aminoácidos , Tereftalatos Polietilenos , Estudios Prospectivos , Biblioteca de Genes , Mutación
7.
J Comput Chem ; 44(12): 1174-1188, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36648254

RESUMEN

Easy and effective usage of computational resources is crucial for scientific calculations, both from the perspectives of timeliness and economic efficiency. This work proposes a bi-level optimization framework to optimize the computational sequences. Machine-learning (ML) assisted static load-balancing, and different dynamic load-balancing algorithms can be integrated. Consequently, the computational and scheduling engine of the ParaEngine is developed to invoke optimized quantum chemical (QC) calculations. Illustrated benchmark calculations include high-throughput drug suit, solvent model, P38 protein, and SARS-CoV-2 systems. The results show that the usage rate of given computational resources for high throughput and large-scale fragmentation QC calculations can primarily profit, and faster accomplishing computational tasks can be expected when employing high-performance computing (HPC) clusters.

8.
J Comput Chem ; 44(12): 1221-1230, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36704972

RESUMEN

We describe a step-by-step protocol and toolkit for the computation of the relative dissociation free energy (RDFE) with the GROMACS molecular dynamics package, based on a novel bidirectional nonequilibrium alchemical approach. The proposed methodology does not require any intervention on the code and allows computing with good accuracy the RDFE between small molecules with arbitrary differences in volume, charge, and chemical topology. The procedure is illustrated for the challenging SAMPL9 batch of host-guest pairs. The article is supplemented by a detailed online tutorial, available at https://procacci.github.io/vdssb_gromacs/NE-RDFE and by a public Zenodo repository available at https://zenodo.org/record/6982932.

9.
Mol Divers ; 27(2): 603-618, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35635599

RESUMEN

FAK (focal adhesin kinase), a tyrosine kinase, plays an imperative role in cell-cell communication, particularly in cell signaling systems. It is a multi-functional signaling protein, which integrates and transduces signals into cancer cells through growth factor receptors or integrin and its interaction with Paxillin (PAX). The molecular processes by which FAK promotes the development and progression of cancer have progressively established the possible relationship between FAK-PAX complex in many types of cancer. The interaction of FAX and PAX is very important in breast cancer and thus acts as an essential biomarker for drugs, vaccines or peptide inhibitor designing. In this regard, computational approaches, particularly peptide designing to target the binding interface of the interacting partners, would greatly assist the design of peptide inhibitors against various cancer. Accordingly, in this present study, we screened 236 experimentally validated anti-breast cancer peptides using computational drugs repositioning approach to design peptides targeting the FAK-PAX complex. Using protein-peptide docking the binding site for the HP1 was confirmed and a total of 236 anti-breast cancer peptides were screened. Among the 236, only 12 peptides reported a docking score better than the control. From these 12, Magainin with the docking score - 103.8 ± 10.3 kcal/mol, NRC-07 with the docking score - 100.8 ± 16.5 kcal/mol, and Indolicidin with the docking score - 101.7 ± 3.9 kcal/mol, peptides potentially inhibit the FAX-PAX binding. Calculation of protein's motion and FEL revealed the binding and inhibitory behavior. Moreover, binding free energy (MM/GBSA) confirmed that Magainin exhibited the total binding energy - 53.28 kcal/mol, NRC-07 possessed the TBE - 44.16 kcal/mol, and Indolicidin reported the TBE of - 40.48 kcal/mol, thus explaining the inhibitory potential of these peptides. In conclusion, these peptides exhibit strong inhibitory potential and could abrogate the FAK-PAX complex in in vitro models and thus may relieve the burden of breast cancer.


Asunto(s)
Neoplasias de la Mama , Reposicionamiento de Medicamentos , Humanos , Femenino , Paxillin/metabolismo , Magaininas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Tirosina Quinasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511614

RESUMEN

Proliferating cell nuclear antigen (PCNA) is the key regulator of human DNA metabolism. One important interaction partner is p15, involved in DNA replication and repair. Targeting the PCNA-p15 interaction is a promising therapeutic strategy against cancer. Here, a Förster resonance energy transfer (FRET)-based assay for the analysis of the PCNA-p15 interaction was developed. Next to the application as screening tool for the identification and characterization of PCNA-p15 interaction inhibitors, the assay is also suitable for the investigation of mutation-induced changes in their affinity. This is particularly useful for analyzing disease associated PCNA or p15 variants at the molecular level. Recently, the PCNA variant C148S has been associated with Ataxia-telangiectasia-like disorder type 2 (ATLD2). ATLD2 is a neurodegenerative disease based on defects in DNA repair due to an impaired PCNA. Incubation time dependent FRET measurements indicated no effect on PCNAC148S-p15 affinity, but on PCNA stability. The impaired stability and increased aggregation behavior of PCNAC148S was confirmed by intrinsic tryptophan fluorescence, differential scanning fluorimetry (DSF) and asymmetrical flow field-flow fractionation (AF4) measurements. The analysis of the disease associated PCNA variant demonstrated the versatility of the interaction assay as developed.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Enfermedades Neurodegenerativas , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Replicación del ADN
11.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175788

RESUMEN

Over the past three years, significant progress has been made in the development of novel promising drug candidates against COVID-19. However, SARS-CoV-2 mutations resulting in the emergence of new viral strains that can be resistant to the drugs used currently in the clinic necessitate the development of novel potent and broad therapeutic agents targeting different vulnerable spots of the viral proteins. In this study, two deep learning generative models were developed and used in combination with molecular modeling tools for de novo design of small molecule compounds that can inhibit the catalytic activity of SARS-CoV-2 main protease (Mpro), an enzyme critically important for mediating viral replication and transcription. As a result, the seven best scoring compounds that exhibited low values of binding free energy comparable with those calculated for two potent inhibitors of Mpro, via the same computational protocol, were selected as the most probable inhibitors of the enzyme catalytic site. In light of the data obtained, the identified compounds are assumed to present promising scaffolds for the development of new potent and broad-spectrum drugs inhibiting SARS-CoV-2 Mpro, an attractive therapeutic target for anti-COVID-19 agents.


Asunto(s)
Inteligencia Artificial , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Redes Neurales de la Computación
12.
Molecules ; 28(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513188

RESUMEN

As one of the crucial targets of epigenetics, histone lysine-specific demethylase 1 (LSD1) is significant in the occurrence and development of various tumors. Although several irreversible covalent LSD1 inhibitors have entered clinical trials, the large size and polarity of the FAD-binding pocket and undesired toxicity have focused interest on developing reversible LSD1 inhibitors. In this study, targeting the substrate-binding pocket of LSD1, structure-based and ligand-based virtual screenings were adopted to expand the potential novel structures with molecular docking and pharmacophore model strategies, respectively. Through drug-likeness evaluation, ADMET screening, molecular dynamics simulations, and binding free energy screening, we screened out one and four hit compounds from the databases of 2,029,554 compounds, respectively. Generally, these hit compounds can be divided into two categories, amide (Lig2 and Comp2) and 1,2,4-triazolo-4,3-α-quinazoline (Comp3, Comp4, Comp7). Among them, Comp4 exhibits the strongest binding affinity. Finally, the binding mechanisms of the hit compounds were further calculated in detail by the residue free energy decomposition. It was found that van der Waals interactions contribute most to the binding, and FAD is also helpful in stabilizing the binding and avoiding off-target effects. We believe this work not only provides a solid theoretical foundation for the design of LSD1 substrate reversible inhibitors, but also expands the diversity of parent nucleus, offering new insights for synthetic chemists.


Asunto(s)
Inhibidores Enzimáticos , Histonas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Histonas/metabolismo , Simulación de Dinámica Molecular , Histona Demetilasas/metabolismo
13.
Proteins ; 90(12): 2116-2123, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871311

RESUMEN

The type III secretion system (T3SS) is an important molecular machinery in gram-negative bacteria Shigella flexneri as it provides ways for translocating virulence factors from the bacteria into host cells, eventually leading to severe disease symptoms such as bacillary dysentery. Due to the rising concerns of antibiotics resistance in bactericidal strategy, the anti-virulence strategy that primarily targets the T3SS components becomes an attractive alternative. MxiM, the secretin pilot protein of Shigella flexneri, binds the secretin MxiD and facilitates the formation of the secretin ring in outer membrane in T3SS assembly. MxiM harbors a large hydrophobic pocket that has been shown to be important in MxiM-MxiD interaction. In this work, I examined the ligand binding property of MxiM by performing molecular dynamics (MD) simulations of the association between MxiM and a series of hydrophobic ligands, with simulation time amounted to 30 µs. MD simulations successfully captured spontaneous ligand binding events in 153 of the 300 trajectories. The ligand binding can be categorized into two types: a fast type, in which the ligand binds quickly into the hydrophobic pocket and a slow type, in which the ligand forms an encounter complex with the protein before binding into the hydrophobic pocket. Using the MxiM-ligand binding poses captured in MD simulations, I additionally performed umbrella-sampling MD simulations with total simulation time amounted to 63 µs to obtain protein-ligand binding free energies. The relationship between the ligand binding free energy and ligand size appears to be nonlinear and exhibits an exponential decay pattern. In summary, I performed computational characterization of MxiM-hydrophobic ligand binding capabilities and properties, which may provide valuable insights into designing anti-bacterial medicine against antibiotics resistance in Shigella flexneri.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Shigella flexneri , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Ligandos , Secretina/metabolismo , Shigella flexneri/metabolismo
14.
Proteins ; 90(12): 2058-2066, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35833249

RESUMEN

The von Willebrand disease (vWD) is the most common hereditary bleeding disorder caused by defects of the von Willebrand Factor (vWF), a large extracellular protein in charge of adhering platelets to sites of vascular lesions. vWF performs this essential homeostatic task via specific protein-protein interactions between the vWF A1 domain and the platelet receptor, the glycoprotein Ib alpha (GPIBα). The two naturally occurring vWF A1 domain mutations G1324A and G1324S, near the GPIBα binding site, induce a dramatic decrease in platelet adhesion, resulting in a bleeding disorder classified as type 2M vWD. However, the reason for the drastic phenotypic response induced by these two supposedly minor modifications remains unclear. We addressed this question using a combination of equilibrium-molecular dynamics (MD) and nonequilibrium MD-based free energy simulations. Our data confirms that both mutations maintain the highly stable Rossmann fold of the vWF A1 domain. G1324A and G1324S mutations hardly changed the per-residue flexibility of the A1 domain but induced a global conformational change affecting the region near the binding site to GPIBα. Furthermore, we observed two significant changes in the vWF A1 domain upon mutation, the global redistribution of the internal mechanical stress and the increased thermodynamic stability of the A1 domain. These observations are consistent with previously reported mutations increasing the melting temperature. Overall, our results support the idea of thermodynamic conformational restriction of A1-before the binding to GPIBα-as a crucial factor determining the loss-of-function of the G1324A(S) vWD mutants.


Asunto(s)
Enfermedades de von Willebrand , Factor de von Willebrand , Humanos , Sitios de Unión , Plaquetas/metabolismo , Unión Proteica , Termodinámica , Enfermedades de von Willebrand/genética , Factor de von Willebrand/química , Factor de von Willebrand/genética
15.
J Comput Chem ; 43(17): 1151-1160, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35485139

RESUMEN

We describe the theory of the so-called common-core/serial-atom-insertion (CC/SAI) approach to compute alchemical free energy differences and its practical implementation in a Python package called Transformato. CC/SAI is not tied to a specific biomolecular simulation program and does not rely on special purpose code for alchemical transformations. To calculate the alchemical free energy difference between several small molecules, the physical end-states are mutated into a suitable common core. Since this only requires turning off interactions, the setup of intermediate states is straightforward to automate. Transformato currently supports CHARMM and OpenMM as back ends to carry out the necessary molecular dynamics simulations, as well as post-processing calculations. We validate the method by computing a series of relative solvation free energy differences.


Asunto(s)
Simulación de Dinámica Molecular , Entropía , Termodinámica
16.
J Comput Chem ; 43(26): 1771-1782, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36054249

RESUMEN

Drug resistant Mycobacterium tuberculosis, which mostly results from single nucleotide polymorphisms in antibiotic target genes, poses a major threat to tuberculosis treatment outcomes. Relative binding free energy (RBFE) calculations can rapidly predict the effects of mutations, but this approach has not been tested on large, complex proteins. We use RBFE calculations to predict the effects of M. tuberculosis RNA polymerase and DNA gyrase mutations on rifampicin and moxifloxacin susceptibility respectively. These mutations encompass a range of amino acid substitutions with known effects and include large steric perturbations and charged moieties. We find that moderate numbers (n = 3-15) of short RBFE calculations can predict resistance in cases where the mutation results in a large change in the binding free energy. We show that the method lacks discrimination in cases with either a small change in energy or that involve charged amino acids, and we investigate how these calculation errors may be decreased.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Girasa de ADN/genética , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Farmacorresistencia Microbiana , Humanos , Moxifloxacino/farmacología , Moxifloxacino/uso terapéutico , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
17.
J Comput Chem ; 43(17): 1186-1200, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35510789

RESUMEN

Temperature-accelerated sliced sampling (TASS) is an enhanced sampling method for achieving accelerated and controlled exploration of high-dimensional free energy landscapes in molecular dynamics simulations. With the aid of umbrella bias potentials, the TASS method realizes a controlled exploration and divide-and-conquer strategy for computing high-dimensional free energy surfaces. In TASS, diffusion of the system in the collective variable (CV) space is enhanced with the help of metadynamics bias and elevated-temperature of the auxiliary degrees of freedom (DOF) that are coupled to the CVs. Usually, a low-dimensional metadynamics bias is applied in TASS. In order to further improve the performance of TASS, we propose here to use a highdimensional metadynamics bias, in the same form as in a parallel bias metadynamics scheme. Here, a modified reweighting scheme, in combination with artificial neural network is used for computing unbiased probability distribution of CVs and projections of high-dimensional free energy surfaces. We first validate the accuracy and efficiency of our method in computing the four-dimensional free energy landscape for alanine tripeptide in vacuo. Subsequently, we employ the approach to calculate the eight-dimensional free energy landscape of alanine pentapeptide in vacuo. Finally, the method is applied to a more realistic problem wherein we compute the broad four-dimensional free energy surface corresponding to the deacylation of a drug molecule which is covalently complexed with a ß-lactamase enzyme. We demonstrate that using parallel bias in TASS improves the efficiency of exploration of high-dimensional free energy landscapes.


Asunto(s)
Alanina , Simulación de Dinámica Molecular , Entropía , Temperatura , Termodinámica
18.
Int J Mol Sci ; 23(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35628665

RESUMEN

Inhibition of the papain-like protease (PLpro) of SARS-CoV-2 has been demonstrated to be a successful target to prevent the spreading of the coronavirus in the infected body. In this regard, covalent inhibitors, such as the recently proposed VIR251 ligand, can irreversibly inactivate PLpro by forming a covalent bond with a specific residue of the catalytic site (Cys111), through a Michael addition reaction. An inhibition mechanism can therefore be proposed, including four steps: (i) ligand entry into the protease pocket; (ii) Cys111 deprotonation of the thiol group by a Brønsted-Lowry base; (iii) Cys111-S- addition to the ligand; and (iv) proton transfer from the protonated base to the covalently bound ligand. Evaluating the energetics and PLpro conformational changes at each of these steps could aid the design of more efficient and selective covalent inhibitors. For this aim, we have studied by means of MD simulations and QM/MM calculations the whole mechanism. Regarding the first step, we show that the inhibitor entry in the PLpro pocket is thermodynamically favorable only when considering the neutral Cys111, that is, prior to the Cys111 deprotonation. For the second step, MD simulations revealed that His272 would deprotonate Cys111 after overcoming an energy barrier of ca. 32 kcal/mol (at the QM/MM level), but implying a decrease of the inhibitor stability inside the protease pocket. This information points to a reversible Cys111 deprotonation, whose equilibrium is largely shifted toward the neutral Cys111 form. Although thermodynamically disfavored, if Cys111 is deprotonated in close proximity to the vinylic carbon of the ligand, then covalent binding takes place in an irreversible way (third step) to form the enolate intermediate. Finally, due to Cys111-S- negative charge redistribution over the bound ligand, proton transfer from the initially protonated His272 is favored, finally leading to an irreversibly modified Cys111 and a restored His272. These results elucidate the selectivity of Cys111 to enable formation of a covalent bond, even if a weak proton acceptor is available, as His272.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Protones , Proteasas Similares a la Papaína de Coronavirus , Humanos , Ligandos , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2
19.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562892

RESUMEN

Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene, PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational stability of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches have been developed to treat the more severe manifestations of the disorder, but they are either not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV complex, we design a new generation of compound IV-analogues with a higher affinity for the enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence between the calculated alchemical binding free energies and the experimentally determined ΔΔGb values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat PKU using the X-ray structure of their complexes with the target PAH enzyme.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Calorimetría , Humanos , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/química , Fenilcetonurias/metabolismo , Pliegue de Proteína
20.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233140

RESUMEN

Xyloglucan endotransglycosylases (XETs) play key roles in the remodelling and reconstruction of plant cell walls. These enzymes catalyse homo-transglycosylation reactions with xyloglucan-derived donor and acceptor substrates and hetero-transglycosylation reactions with a variety of structurally diverse polysaccharides. In this work, we describe the basis of acceptor substrate binding specificity in non-specific Tropaeolum majus (TmXET6.3) and specific Populus tremula x tremuloides (PttXET16A) XETs, using molecular docking and molecular dynamics (MD) simulations combined with binding free energy calculations. The data indicate that the enzyme-donor (xyloglucan heptaoligosaccharide or XG-OS7)/acceptor complexes with the linear acceptors, where a backbone consisted of glucose (Glc) moieties linked via (1,4)- or (1,3)-ß-glycosidic linkages, were bound stably in the active sites of TmXET6.3 and PttXET16A. Conversely, the acceptors with the (1,6)-ß-linked Glc moieties were bound stably in TmXET6.3 but not in PttXET16A. When in the (1,4)-ß-linked Glc containing acceptors, the saccharide moieties were replaced with mannose or xylose, they bound stably in TmXET6.3 but lacked stability in PttXET16A. MD simulations of the XET-donor/acceptor complexes with acceptors derived from (1,4;1,3)-ß-glucans highlighted the importance of (1,3)-ß-glycosidic linkages and side chain positions in the acceptor substrates. Our findings explain the differences in acceptor binding specificity between non-specific and specific XETs and associate theoretical to experimental data.


Asunto(s)
Química Computacional , beta-Glucanos , Glucosa , Glicosilación , Glicosiltransferasas/metabolismo , Manosa , Simulación del Acoplamiento Molecular , Plantas/metabolismo , Polisacáridos/metabolismo , Especificidad por Sustrato , Xilanos/química , Xilosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA