RESUMEN
Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.
Asunto(s)
Alcoholismo , Ceftriaxona , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Ceftriaxona/metabolismo , Ceftriaxona/farmacología , Etanol/farmacología , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Núcleo Accumbens , Ratas , RecurrenciaRESUMEN
Adverse early life experiences are associated with an enhanced risk for mental and physical health problems, including substance abuse. Despite clinical evidence, the mechanisms underlying these relationships are not fully understood. Maternal separation (MS) is a commonly used animal model of early neglect. The aim of the current study is to determine whether the N-methyl-D-aspartate receptor (NMDAR)/glycine sites are involved in vulnerability to alcohol consumption (two-bottle choice paradigm) and reversal learning deficits (Barnes maze task) in adolescent rats subjected to the MS procedure and whether these effects are sex dependent. By using ELISA, we evaluated MS-induced changes in the NMDAR subunits (GluN1, GluN2A, GluN2B) expression, especially in the glycine-binding subunit, GluN1, in the prefrontal cortex (PFC) and ventral striatum (vSTR) of male/female rats. Next, we investigated whether Org 24598, a glycine transporter 1 (GlyT1) inhibitor, was able to modify ethanol drinking in adolescent and adult male/female rats with prior MS experience and reversal learning in the Barnes maze task. Our findings revealed that adolescent MS female rats consumed more alcohol which may be associated with a substantial increase in GluN1 subunit of NMDAR in the PFC and vSTR. Org 24598 decreased ethanol intake in both sexes with a more pronounced decrease in ethanol consumption in adolescent female rats. Furthermore, MS showed deficits in reversal learning in both sexes. Org 24598 ameliorated reversal learning deficits, and this effect was reversed by the NMDAR/glycine site inhibitor, L-701,324. Collectively, our results suggest that NMDAR/glycine sites might be targeted in the treatment of alcohol abuse in adolescents with early MS, especially females.
Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Aprendizaje Inverso , Consumo de Bebidas Alcohólicas , Animales , Etanol/farmacología , Femenino , Glicina/farmacología , Masculino , Privación Materna , RatasRESUMEN
BACKGROUND: Interindividual variation in voluntary ethanol consumption and ethanol response is partially influenced by genetic variation. Discovery of the genes and allelic variants that affect these phenotypes may clarify the etiology and pathophysiology of problematic alcohol use, including alcohol use disorder. Genetically diverse mouse populations, which demonstrate heritable variation in ethanol consumption, can be utilized to discover the genes and gene networks that influence this trait. The Collaborative Cross (CC) recombinant inbred strains, Diversity Outbred (DO) population and their 8 founder strains are complementary mouse resources that capture substantial genetic diversity and can demonstrate expansive phenotypic variation in heritable traits. These populations may be utilized to discover candidate genes and gene networks that moderate ethanol consumption and other ethanol-related traits. METHODS: We characterized ethanol consumption, preference, and pharmacokinetics in the 8 founder strains and 10 CC strains in 12-hour drinking sessions during the dark phase of the circadian cycle. RESULTS: Ethanol consumption was substantially heritable, both early in ethanol access and over a chronic intermittent access schedule. Ethanol pharmacokinetics were also heritable; however, no association between strain-level ethanol consumption and pharmacokinetics was detected. The PWK/PhJ strain was the highest drinking strain, with consumption substantially exceeding that of the C57BL/6J strain, which is commonly used as a model of "high" or "binge" drinking. Notably, we found strong evidence that sex moderated genetic effects on voluntary ethanol drinking. CONCLUSIONS: Collectively, this research serves as a foundation for expanded genetic study of ethanol consumption in the CC/DO and related populations. Moreover, we identified reference strains with extreme consumption phenotypes that effectively represent polygenic models of excessive ethanol use.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Animales , Depresores del Sistema Nervioso Central/sangre , Depresores del Sistema Nervioso Central/farmacocinética , Etanol/sangre , Etanol/farmacocinética , Femenino , Masculino , Ratones Endogámicos , Carácter Cuantitativo HeredableRESUMEN
Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.
Asunto(s)
Trastornos Relacionados con Alcohol/complicaciones , Trastornos Relacionados con Alcohol/genética , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/fisiología , Trastornos del Sueño del Ritmo Circadiano/complicaciones , Consumo de Bebidas Alcohólicas , Animales , Ritmo Circadiano , Modelos Animales de Enfermedad , Etanol , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Factores SexualesRESUMEN
Clinical and animal studies show that ethanol exposure and inflammation during pregnancy cause similar behavioral disturbances in the offspring. While ethanol is shown to stimulate both neuroimmune and neurochemical systems in adults, little is known about their anatomical relationship in response to ethanol in utero and whether neuroimmune factors mediate ethanol's effects on neuronal development and behavior in offspring. Here we examined in female and male adolescent rats a specific population of neurons concentrated in lateral hypothalamus, which coexpress the inflammatory chemokine C-C motif ligand 2 (CCL2) or its receptor CCR2 with the orexigenic neuropeptide, melanin-concentrating hormone (MCH), that promotes ethanol drinking behavior. We demonstrate that maternal administration of ethanol (2 g/kg/d) from embryonic day 10 (E10) to E15, while having little impact on glia, stimulates expression of neuronal CCL2 and CCR2, increases density of both large CCL2 neurons colocalizing MCH and small CCL2 neurons surrounding MCH neurons, and stimulates ethanol drinking and anxiety in adolescent offspring. We show that these neuronal and behavioral changes are similarly produced by maternal administration of CCL2 (4 or 8 µg/kg/d, E10-E15) and blocked by maternal administration of a CCR2 antagonist INCB3344 (1 mg/kg/d, E10-E15), and these effects of ethanol and CCL2 are sexually dimorphic, consistently stronger in females. These results suggest that this neuronal CCL2/CCR2 system closely linked to MCH neurons has a role in mediating the effects of maternal ethanol exposure on adolescent offspring and contributes to the higher levels of adolescent risk factors for alcohol use disorders described in women.SIGNIFICANCE STATEMENT Ethanol consumption and inflammatory agents during pregnancy similarly increase alcohol intake and anxiety in adolescent offspring. To investigate how neurochemical and neuroimmune systems interact to mediate these disturbances, we examined a specific population of hypothalamic neurons coexpressing the inflammatory chemokine CCL2 and its receptor CCR2 with the neuropeptide, melanin-concentrating hormone. We demonstrate in adolescent offspring that maternal administration of CCL2, like ethanol, stimulates these neurons and increases ethanol drinking and anxiety, and these effects of ethanol are blocked by maternal CCR2 antagonist and consistently stronger in females. This suggests that neuronal chemokine signaling linked to neuropeptides mediates effects of maternal ethanol exposure on adolescent offspring and contributes to higher levels of adolescent risk factors for alcohol use disorders in women.
Asunto(s)
Quimiocina CCL2/metabolismo , Etanol/administración & dosificación , Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores CCR2/metabolismo , Caracteres Sexuales , Consumo de Bebidas Alcohólicas , Animales , Ansiedad/inducido químicamente , Conducta Animal , Recuento de Células , Femenino , Neuronas/metabolismo , Embarazo , Ratas Sprague-DawleyRESUMEN
Chronic alcohol consumption alters the levels of microRNAs and mRNAs in the brain, but the specific microRNAs and processes that target mRNAs to affect cellular function and behavior are not known. We examined the in vivo manipulation of previously identified alcohol-responsive microRNAs as potential targets to reduce alcohol consumption. Silencing of miR-411 by infusing antagomiR-411 into the prefrontal cortex of female C57BL/6J mice reduced alcohol consumption and preference, without altering total fluid consumption, saccharin consumption, or anxiety-related behaviors. AntagomiR-411 reduced alcohol consumption when given to mice exposed to a chronic alcohol drinking paradigm but did not affect the acquisition of consumption in mice without a history of alcohol exposure, suggesting that antagomiR-411 has a neuroadaptive, alcohol-dependent effect. AntagomiR-411 decreased the levels of miR-411, as well as the association of immunoprecipitated miR-411 with Argonaute2; and, it increased levels of Faah and Ppard mRNAs. Moreover, antagomiR-411 increased the neuronal expression of glutamate receptor AMPA-2 protein, a known alcohol target and a predicted target of miR-411. These results suggest that alcohol and miR-411 function in a homeostatic manner to regulate synaptic mRNA and protein, thus reversing alcohol-related neuroadaptations and reducing chronic alcohol consumption.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Ansiedad/genética , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , MicroARNs/genética , Corteza Prefrontal/metabolismo , Amidohidrolasas/genética , Animales , Antagomirs/farmacología , Proteínas Argonautas/metabolismo , Conducta Animal , Conducta de Ingestión de Líquido , Femenino , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores AMPA/genética , Receptores Citoplasmáticos y Nucleares/genética , Sacarina/administración & dosificación , Edulcorantes/administración & dosificación , Sinapsis/genética , Sinapsis/metabolismoRESUMEN
BACKGROUND: Phosphodiesterase type 4 (PDE4) inhibitors produce widespread anti-inflammatory effects and reduce ethanol (EtOH) consumption in several rodent models. These drugs are potential treatments for several diseases, including central nervous system disorders, but clinical use is limited by their emetic activity. Apremilast is a selective PDE4 inhibitor with fewer gastrointestinal side effects that is FDA-approved for the treatment of psoriasis. METHODS: We measured the acute and chronic effects of apremilast on EtOH consumption in male and female C57BL/6J mice using the continuous and intermittent 24-hour 2-bottle choice drinking models. We also studied the effects of apremilast on preference for sucrose or saccharin, spontaneous locomotor activity, and blood EtOH clearance. Finally, apremilast levels in plasma, liver, and brain were measured 1 or 2 hours after injection. RESULTS: In the continuous and intermittent drinking tests, apremilast (15 to 50 mg/kg, p.o.) dose dependently reduced EtOH intake and preference in male and female mice. Higher doses of apremilast (30 to 50 mg/kg) also reduced total fluid intake in these mice. Chronic administration of apremilast (20 mg/kg) produced a stable reduction in EtOH consumption in both drinking tests with no effect on total fluid intake. The drinking effects were reversible after drug treatment was replaced with vehicle administration (saline) for 2 to 4 days. Six daily apremilast injections did not alter preference for saccharin or sucrose in male or female mice. Apremilast (20 mg/kg) transiently decreased spontaneous locomotor activity and did not alter blood EtOH clearance. The highest levels of apremilast were found in liver followed by plasma and brain. CONCLUSIONS: Apremilast produced stable reductions in voluntary EtOH consumption and was rapidly distributed to plasma and tissues (including the brain), suggesting that it may be an improved PDE4 inhibitor for medication development and repurposing efforts to treat alcohol abuse.
Asunto(s)
Consumo de Bebidas Alcohólicas/prevención & control , Preferencias Alimentarias/efectos de los fármacos , Talidomida/análogos & derivados , Animales , Encéfalo/metabolismo , Conducta de Elección/efectos de los fármacos , Etanol/sangre , Etanol/farmacocinética , Femenino , Hígado/metabolismo , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Sacarina/farmacología , Sacarosa/farmacología , Talidomida/sangre , Talidomida/farmacocinética , Talidomida/farmacologíaRESUMEN
BACKGROUND: Recent reports have demonstrated that binge-like ethanol (EtOH) drinking leads to an increase in hypothalamic orexin (OX) signaling and that suppressing this signaling via systemic administration of an orexin receptor (OXR) antagonist blocks this behavior; however, the specific OX pathways that modulate this behavior remain unknown. The goal of this study was to further elucidate the role of the OX system in binge-like EtOH drinking using behavioral, molecular, and pharmacological techniques. METHODS: The drinking-in-the-dark (DID) paradigm was used to model binge-like drinking behavior in male C57BL/6J mice. Experiment 1 examined changes in the OX precursor, prepro-orexin, within the hypothalamus following multiple cycle EtOH or sucrose DID using polymerase chain reaction (PCR) analysis. In experiments 2a and 2b, we used site-directed infusion of an OXR antagonist to examine the individual contribution of each OXR subtype within the ventral tegmental area (VTA) and central nucleus of the amygdala (CeA), respectively, in binge-like EtOH or sucrose drinking. RESULTS: Findings from our PCR study revealed that multiple cycles of binge-like EtOH drinking did not lead to changes in prepro-orexin mRNA as a function of binge-like EtOH drinking. However, data from site-directed pharmacology studies indicate that the orexin-1 receptor (OX1R) is the predominate receptor subtype within the VTA and CeA that regulates binge-like EtOH drinking. Interestingly, inhibition of OX1Rs did not affect binge-like sucrose intake, which suggests that these OX circuits are specific for EtOH consumption. CONCLUSIONS: As a whole, these data suggest that the VTA and CeA are important regions in which OX regulates binge-like EtOH drinking behavior. Moreover, these findings identify OXR antagonists as a potential treatment option that may be used to ameliorate problematic drinking behavior while leaving responding to natural rewards relatively intact.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Núcleo Amigdalino Central/fisiología , Etanol/administración & dosificación , Receptores de Orexina/fisiología , Área Tegmental Ventral/fisiología , Animales , Benzoxazoles/administración & dosificación , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Núcleo Amigdalino Central/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Naftiridinas , Antagonistas de los Receptores de Orexina/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Urea/administración & dosificación , Urea/análogos & derivados , Área Tegmental Ventral/efectos de los fármacosRESUMEN
BACKGROUND: A number of studies have shown that acetaldehyde synthesized in the brain is necessary to induce ethanol (EtOH) reinforcement in naïve animals (acquisition phase). However, after chronic intake is achieved (maintenance phase), EtOH intake becomes independent of acetaldehyde generation or its levels. Glutamate has been reported to be associated with the maintenance of chronic EtOH intake. The levels of brain extracellular glutamate are modulated by 2 glial processes: glutamate reabsorption via an Na(+) -glutamate transporter (GLT1) and a cystine-glutamate exchanger. Chronic EtOH intake lowers GLT1 levels and increases extracellular glutamate. The administration of N-acetyl cysteine (NAC), a precursor of cystine, has been shown to reduce the relapse of several drugs of abuse, while NAC has not been tested on chronic EtOH intake or on EtOH's influence on the motivation for another drug. These were investigated in the present study. METHODS: (i) Rats bred for their high EtOH intake were allowed access to 10% EtOH and water up to 87 days. NAC was administered (30 and 60 mg/kg daily, intraperitoneally) for 14 consecutive days, either during the acquisition phase or the maintenance phase of EtOH drinking. (ii) In additional experiments, rats were allowed EtOH (10%) and water access for 61 days, after which EtOH was replaced by saccharin (0.3%) to determine both if chronic EtOH consumption influences saccharin intake and whether NAC modifies the post chronic EtOH saccharin intake. RESULTS: NAC did not influence the acquisition ("first hit") of chronic EtOH intake, but greatly inhibited (60 to 70%; p < 0.0001) EtOH intake when NAC was administered to animals that were consuming EtOH chronically. NAC did not influence saccharin intake in naïve animals. In animals that had consumed EtOH chronically and were thereafter offered a saccharin solution (0.3%), saccharin intake increased over 100% versus that of EtOH-untreated animals, an effect that was fully suppressed by NAC. CONCLUSIONS: N-acetyl cysteine, a drug approved for use in humans, markedly reduces chronic EtOH intake and abolishes the increased intake of saccharin stimulated by chronic EtOH drinking.
Asunto(s)
Acetilcisteína/uso terapéutico , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Motivación/efectos de los fármacos , Sacarina/administración & dosificación , Animales , Masculino , Ratas , Autoadministración , Factores de TiempoRESUMEN
BACKGROUND: Methylphenidate (MPH) is a stimulant prescribed to treat attention-deficit/ hyperactivity disorder. Its primary mechanism of action is in the dopamine system, alterations of which are associated with vulnerability to alcohol abuse. There are concerns that juvenile MPH treatment may influence adult drinking behavior. This study examined the interaction of MPH treatment and environmental rearing conditions, which are known to independently influence ethanol (EtOH) drinking behavior, on anxiety-like behavior and vulnerability to alcohol abuse in a juvenile rodent model. METHODS: Male Sprague-Dawley rats were housed in enriched, standard, or isolated conditions for 4 weeks, starting at postnatal day 21. Rats were concurrently treated with 8 mg/kg/d MPH or saline, delivered via osmotic minipump. Anxiety-like behavior was determined at the end of the treatment session, and 5 weeks later. After MPH treatment, rats were exposed to a 2-bottle choice EtOH drinking procedure that lasted 3 weeks. RESULTS: Early life chronic MPH treatment was associated with greater EtOH intake and greater EtOH preference, but only in socially isolated animals. Isolated animals had greater levels of anxiety-like behavior than standard-housed or enriched animals after 4 weeks of exposure to the housing conditions, a difference that persisted even after all animals had been individually housed for an additional 5 weeks and exposed to EtOH. CONCLUSIONS: These results suggest that early life MPH treatment may increase vulnerability to EtOH drinking in adulthood in a subset of the population. Additionally, this study highlights the importance of early rearing condition for establishing long-lasting behavioral phenotypes. Environmental histories should be considered when prescribing MPH treatment to young children.
Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Metilfenidato/administración & dosificación , Metilfenidato/farmacología , Aislamiento Social/psicología , Factores de Edad , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Conducta de Elección/efectos de los fármacos , Masculino , RatasRESUMEN
Experimental evidence suggests that endogenous opioids play an important role in the development of ethanol addiction. In this study, we employed two mouse lines divergently bred for opioid-mediated stress-induced analgesia. In comparison with HA (high analgesia line) mice, LA (low analgesia line) mice, having lower opioid receptor system activity, manifest enhanced basal as well as stress-induced ethanol drinking. Here, we found that recently discovered C320T transition in exon 2 of the δ-opioid receptor gene (EU446125.1), which results in an A107V substitution (ACA23171.1), leads to higher ethanol preference in CT mice compared with CC homozygotes. This genetic association is particularly evident under chronic mild stress (CMS) conditions. The interaction between stress and ethanol intake was significantly stronger in HA than in LA mice. Ethanol almost completely attenuated the pro-depressive effect of CMS (assessed with the tail suspension test) in both the CC and CT genotypes in the HA line. In the LA mice, a lack of response to ethanol was observed in the CC genotype, whereas ethanol consumption strengthened depressive-like behaviours in CT individuals. Our results suggest that constitutively active A107V substitution in δ-opioid receptors may be involved in stress-enhanced vulnerability to ethanol abuse and in the risk of ethanol dependence.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Péptidos Opioides/genética , Polimorfismo Genético/genética , Receptores Opioides delta/genética , Estrés Psicológico/fisiopatología , Analgesia , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos , Péptidos Opioides/fisiologíaRESUMEN
Alcohol use disorder (AUD) has a complicated pathophysiology. Binge ethanol intoxication may produce long-lasting changes throughout extended amygdala neurocircuitry including neuroinflammation, often leading to relapse. Therefore, understanding the role of binge drinking induced neuroinflammation on extended amygdala neurocircuitry is critically important for treatment. We sought to understand the role of neuroinflammation in a naturalized form of rodent binge ethanol drinking (Drinking in the Dark (DID)). In a 5-week DID paradigm, we demonstrate that acute intraperitoneal (IP) injection of the anti-inflammatory drug minocycline significantly reduced binge drinking repeatedly in male and female Cx3CR1-GFP and C57BL/6J mice. Importantly, IP administration transiently decreased intermittent access sucrose consumption, was not observed on the second IP injection, but did not significantly alter food or water consumption, suggesting that minocycline may produce initial acute aversive effects and may not alter long-term consumption of natural rewards. Examination of rodent behaviors post ethanol binge drinking reveals no lasting effects of minocycline treatment on locomotion or anxiety-like behavior. To assess neuroinflammation, we developed a novel analysis method using a Matlab image analysis script, which allows for non-biased skeletonization and evaluation of microglia morphology to determine a possible activation state in Cx3CR1-GFP knock-in mice after repeated DID. We observed significant morphological changes of microglia within the CeA, but no differences in the BLA. Taken together, this study demonstrates repeated binge ethanol consumption can produce significant levels of microglia morphology changes within the CeA, and that immunomodulatory therapies may be an intriguing pharmacological candidate for the treatment of AUD.
RESUMEN
We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing this TH + LC â RMTg noradrenergic pathway promotes increased levels of binge-like ethanol intake and reduced ethanol-induced conditioned taste aversion (CTA). To this end, both male and female TH-ires-cre mice on a C57BL/6 J background were cannulated in the RMTg and injected in the LC with rAVV viruses that encode cre-dependent Gi-expressing designer receptor exclusively activated by designer drugs (DREADDs), or its control, to directly control the activity of NE neurons. Inhibition of the LC to RMTg pathway had no effect on the binge-ethanol drinking in a "drinking-in-the-dark" (DID) paradigm. However, when using this paradigm during the light cycle, silencing of this circuit significantly increased ethanol intake without altering sucrose drinking. Moreover, we found that inhibition of this circuit significantly attenuated an ethanol-induced CTA. In addition, when compared to control animals, pairing RMTg-directed Clozapine N-oxide (CNO) with an i.p. injection of 1.5 g/kg ethanol reduced c-Fos activation in the LC, and increased c-Fos expression in the ventral tegmental area (VTA) in Gi-expressing mice. Our data show that inhibition of the TH + LC to the RMTg pathway significantly increased ethanol drinking as well as attenuated ethanol-induced CTA, supporting the involvement of the LC to RMTg noradrenergic circuit as an important protective mechanism against excessive ethanol consumption.
Asunto(s)
Etanol , Locus Coeruleus , Ratones , Masculino , Femenino , Animales , Etanol/farmacología , Fotoperiodo , Ratones Endogámicos C57BL , Área Tegmental Ventral , Consumo de Bebidas AlcohólicasRESUMEN
Apremilast is a phosphodiesterase (PDE) type 4 inhibitor that is nonselective at subtypes PDE4A-D. It modulates ethanol and GABAergic responses via protein kinase A (PKA) phosphorylation of specific GABAA receptor subunits and has opposite effects on ethanol-induced ataxia in wild-type and GABAA ß3-S408/409A knock-in mice. We hypothesized that these different effects are due to preferential actions at different PDE4 subtypes. To test this hypothesis, we compared effects of selective PDE4 inhibitors on responses to ethanol and GABAergic drugs in male and female C57BL/6J mice. The PDE4B inhibitor A33 accelerated recovery from ataxia induced by ethanol and diazepam but did not alter ataxia induced by propofol. The PDE4D inhibitor D159687 accelerated recovery from diazepam-induced ataxia but prolonged recovery from ethanol- and propofol-induced ataxia. A33 shortened, while D159687 prolonged, the sedative-hypnotic effects of ethanol. Both drugs shortened diazepam's sedative-hypnotic effects. The modulatory effects of A33 and D159687 were completely prevented by the PKA inhibitor H89. Only D159687 prevented development of acute functional tolerance to ethanol-induced ataxia. D159687 transiently reduced two-bottle choice drinking in male and female mice that had consumed ethanol for 3 weeks and transiently reduced two-bottle choice, every-other-day drinking in male mice. A33 did not alter ethanol drinking in either procedure. Neither drug altered binge-like ethanol consumption or blood ethanol clearance. Thus, D159687 produced behavioral effects similar to apremilast, although it produced a more transient and smaller reduction in drinking. These results indicate that PDE4D inhibition contributes to apremilast's ability to reduce ethanol drinking, whereas PDE4B inhibition is not involved.
Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Propofol , Ratones , Masculino , Femenino , Animales , Etanol , Ratones Endogámicos C57BL , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Hipnóticos y Sedantes/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Ataxia , Diazepam/farmacologíaRESUMEN
The central nucleus of the amygdala (CeA) is a critical brain region in the integration of emotional behaviors and is one of the major output areas of the amygdaloid complex. The CeA is composed of GABAergic interneurons and projection neurons which co-express a range of peptides including neuropeptide Y (NPY). Importantly, GABA and NPY signaling, via the NPY Y1 receptor (Y1R), in the CeA modulate binge-like ethanol intake in rodents and these systems undergo neuroplastic alterations following a history of ethanol consumption. Here we assessed the roles of GABAergic and Y1R+ circuits arising from the CeA and innervating the lateral habenula (LHb), a brain region that modulates the aversive properties of ethanol, in modulating binge-like ethanol intake in mice using "drinking in the dark" (DID) procedures. Using an anterograde cre-inducible reporter virus we established the CeA â LHb circuit in male and female vgat-ires-cre and NPY1r-cre mice. Next, we found that chemogenetic silencing of both the GABAergic or Y1R+ CeA â LHb circuit significantly blunted binge-like intake of a 20% ethanol solution but this same procedure failed to alter the consumption of a 3% sucrose solution. Finally, one, 4-day cycle of DID failed to alter basal or effects of ethanol or NPY on inhibitory transmission in Y1R+ CeA â LHb neurons. The present results suggest that blunting GABAergic tone in LHb-projecting CeA neurons may represent a new approach to preventing the development of AUDs. Drugs that target NPY Y1Rs are potential attractive targets.
RESUMEN
The putamen is a nucleus within the sensory-motor striatal network that is involved in automatic, habitual actions. Schedule-induced polydipsia (SIP) is highly automated behavior, reliably occurring under intermediate interval schedules of reinforcement. The effect of putamen inhibition in mediating SIP of water and ethanol (4% w/v) under a Fixed Time 5-min (FT-5 min) schedule for food delivery was tested in 12 rhesus monkeys (6 male, 6 female). Water and ethanol SIP sessions ended after set volumes were consumed. Baseline patterns of SIP intake differed between water and ethanol SIP in volume but not in pattern of drinking. Activation of the designer receptor exclusively activated by designer drug (DREADD: hM4Di) with deschloroclozapine (DCZ; 300 µg/kg, i.m.) administered 30 min prior to the onset of the SIP session, for four consecutive sessions. DCZ administration increased the postpellet drink volume and reduced the time to drink both water and ethanol. Although the effect of DCZ treatment was similar for increasing SIP with either water or ethanol, post-DCZ return to baseline SIP rates of differed, perhaps highlighting the effect of a state dependency with ethanol SIP. Overall, the study shows that targeting the putamen with the inhibitory DREADD produces a reversible, reproducible and reliable increase in adjunctive drinking.
Asunto(s)
Etanol , Putamen , Animales , Conducta de Ingestión de Líquido , Etanol/farmacología , Femenino , Macaca mulatta , Masculino , Esquema de Refuerzo , AguaRESUMEN
Binge ethanol drinking is an increasingly problematic component of alcohol use disorder costing the United States approximately over $150 billion every year and causes progressive neuroplasticity alterations in numerous brain regions. However, the precise nature or machinery that underlies binge drinking has not yet been elucidated. Corticotropin releasing factor (CRF) neurons in the central amygdala (CeA) are thought to modulate binge drinking, but the specific circuit mechanisms remain poorly understood. Here, we combined optogenetics with in vivo electrophysiology to identify and record from CeA CRF neurons in mice during a repeated binge ethanol drinking task. First, we found that CeA CRF neurons were more active than CeA non-CRF cells during our binge drinking paradigm. We also observed that CeA CRF neurons displayed a heterogeneous spectrum of responses to a lick of ethanol including, pre-lick activated, lick-excited, lick-inhibited, and no response. Interestingly, pre-lick activated CeA CRF neurons exhibited higher frequency and burst firing during binge drinking sessions. Moreover, their overall tonic and phasic electrical activity enhances over repeated binge drinking sessions. Remarkably, CeA CRF units and pre-lick activated CeA CRF neurons did not show higher firing rate or bursting activity during water and sucrose consumption, suggesting that ethanol may "hijack" or plastically alter their intrinsic excitability. This article is part of the special issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Asunto(s)
Potenciales de Acción/fisiología , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/toxicidad , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/fisiopatología , Etanol/administración & dosificación , Femenino , Masculino , Ratones , Ratones Transgénicos , Microelectrodos , Neuronas/efectos de los fármacosRESUMEN
Modifications in brain regions that govern reward-seeking are thought to contribute to persistent behaviors that are heavily associated with alcohol-use disorder (AUD) including binge ethanol drinking. The bed nucleus of the stria terminalis (BNST) is a critical node linked to both alcohol consumption and the onset, maintenance and progression of adaptive anxiety and stress-related disorders. Differences in anatomy, connectivity and receptor subpopulations, make the BNST a sexually dimorphic region. Previous work indicates that the ventral BNST (vBNST) receives input from the insular cortex (IC), a brain region involved in processing the body's internal state. This IC-vBNST projection has also been implicated in emotional and reward-seeking processes. Therefore, we examined the functional properties of vBNST-projecting, IC neurons in male and female mice that have undergone short-term ethanol exposure and abstinence using a voluntary Drinking in the Dark paradigm (DID) paired with whole-cell slice electrophysiology. First we show that IC neurons projected predominantly to the vBNST. Next, our data show that short-term ethanol exposure and abstinence enhanced excitatory synaptic strength onto vBNST-projecting, IC neurons in both sexes. However, we observed diametrically opposing modifications in excitability across sexes. In particular, short-term ethanol exposure resulted in increased intrinsic excitability of vBNST-projecting, IC neurons in females but not in males. Furthermore, in females, abstinence decreased the excitability of these same neurons. Taken together these findings show that short-term ethanol exposure, as well as the abstinence cause sex-related adaptations in BNST-projecting, IC neurons.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Corteza Insular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Núcleos Septales/metabolismo , Abstinencia de Alcohol , Animales , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/farmacología , Etanol/administración & dosificación , Etanol/farmacología , Femenino , Corteza Insular/fisiopatología , Masculino , Ratones , Vías Nerviosas , Neuronas/fisiología , Técnicas de Placa-Clamp , Núcleos Septales/fisiopatología , Caracteres Sexuales , Factores SexualesRESUMEN
There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs. Because the neurocircuitry underlying the aversive effects of ethanol is poorly understood, we characterized the role of the LC to RMTg circuit in modulating aversive unconditioned responses and binge-like ethanol intake. Here, both male and female TH-ires-cre mice were cannulated in the RMTg and injected in the LC with rAVV viruses that encode for a Gq-expressing designer receptor exclusively activated by designer drugs (DREADDs) virus, or its control virus, to directly control the activity of NE neurons. A Latin Square paradigm was used to analyze both 20% ethanol and 3% sucrose consumption using the "drinking-in-the-dark" (DID) paradigm. Chemogenetic activation of the LC to RMTg pathway significantly blunted the binge-ethanol drinking, with no effect on the sucrose consumption, increased the emission of mid-frequency vocalizations and induced malaise-like behaviors in mice. The present findings indicate an important involvement of the LC to RMTg pathway in reducing ethanol consumption, and characterize unconditioned aversive reactions induced by activation of this noradrenergic pathway.
Asunto(s)
Conducta Animal/fisiología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/terapia , Locus Coeruleus/fisiología , Norepinefrina/fisiología , Área Tegmental Ventral/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología , Vocalización Animal/efectos de los fármacos , Vocalización Animal/fisiologíaRESUMEN
Alcohol (ethanol) use disorder is associated with changes in frontal cortical areas including the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) that contribute to cognitive deficits, uncontrolled drinking, and relapse. Acute ethanol exposure reduces intrinsic excitability of lateral OFC (lOFC) neurons, while chronic exposure and long-term drinking influence plasticity of intrinsic excitability and function of glutamatergic synapses. However, the time course that these adaptations occur across a history of ethanol drinking is unknown. The current study examined whether short-term and long-term voluntary ethanol consumption using an intermittent access paradigm would alter the biophysical properties of deep-layer pyramidal neurons in the ACC and lOFC. Neuronal spiking varied in the ACC with an initial increase in evoked firing after 1 d of drinking followed by a decrease in firing in mice that consumed ethanol for one week. No difference in lOFC spike number was observed between water controls and 1-d ethanol drinking mice, but mice that consumed ethanol for one week or more showed a significant increase in evoked firing. Voluntary ethanol drinking for 4 weeks also produced a total loss of ethanol inhibition of lOFC neurons. There was no effect of drinking on excitatory or inhibitory synaptic events in ACC or lOFC neurons across all time points in this model. Overall, these results demonstrate that voluntary drinking alters neuronal excitability in the ACC and lOFC in distinct ways and on a different time scale that may contribute to the impairment of prefrontal cortex-dependent behaviors observed in individuals with alcohol use disorder (AUD).