Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(3): 2701-2712, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534786

RESUMEN

Inflammation and collagen-degrading enzymes' overexpression promote collagen decomposition, which affects the structural integrity of the extracellular matrix. The polysaccharide and peptide extracts of the green alga Caulerpa microphysa (C. microphysa) have been proven to have anti-inflammatory, wound healing, and antioxidant effects in vivo and in vitro. However, the biological properties of the non-water-soluble components of C. microphysa are still unknown. In the present study, we demonstrated the higher effective anti-inflammatory functions of C. microphysa ethyl acetate (EA) extract than water extract up to 16-30% in LPS-induced HaCaT cells, including reducing the production of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Furthermore, the excellent collagen homeostasis effects from C. microphysa were proven by suppressing the matrix metalloproteinase-1 (MMP-1) secretion, enhancing type 1 procollagen and collagen expressions dose-dependently in WS1 cells. Moreover, using UHPLC-QTOF-MS analysis, four terpenoids, siphonaxanthin, caulerpenyne, caulerpal A, and caulerpal B, were identified and may be involved in the superior collagen homeostasis and anti-inflammatory effects of the C. microphysa EA extract.

2.
Environ Sci Technol ; 58(26): 11760-11770, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38900969

RESUMEN

Oxygenated volatile organic compounds (OVOCs), emitted in large quantities by the chemical industry, are a major contributor to the formation of ozone and subsequent particulate matter. For the efficient catalytic oxidation of OVOCs, the challenges of molecular activation and intermediate inhibition remain. The construction of bifunctional active sites with specific structures offers a promising way to overcome these problems. Here, the Pd@Layered-CoOx/MFI bifunctional catalyst with core-shell active sites was rationally fabricated though a two-step ligand pyrolysis method, which exhibits a superb oxidation efficiency toward ethyl acetate (EA). Over this, 13.4% of EA (1000 ppm) can be oxidized at just 140 °C with a reaction rate of 13.85 mmol·gPd-1·s-1, around 176.7 times higher than that of the conventional Pd-CoOx/MFI catalyst. The electronic coupling of the Pd-Co pair promotes the electron back-donation from Pd nanoparticles to the layered CoOx shell and facilitates the formation of Pd2+ species, which greatly enhances the adsorption and activation of the electron-rich C═O bond of the EA molecules. In addition, the synergy of these core-shell Pd@Layered-CoOx sites accelerates the activation and transformation of *O species, which inhibit the formation of acetaldehyde and ethanol byproducts, ensuring the rapid total oxidation of EA molecules via the Mars-van Krevelen mechanism. This work established a solid foundation for exploring robust bifunctional catalysts for deep OVOC purification.


Asunto(s)
Oxidación-Reducción , Catálisis , Paladio/química , Compuestos Orgánicos Volátiles/química , Acetatos/química
3.
Anal Bioanal Chem ; 416(3): 689-700, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971663

RESUMEN

Generic extraction methods for the multi-compound pesticide analysis of food have found their solid place in laboratories. Ethyl acetate and acetonitrile extraction methods have been developed as fast and easy to handle standard multi-compound methods, both feature benefits and limitations. The direct injection to gas chromatography can be impaired by a high burden of coextracted matrix, resulting in deterioration of the chromatographic system and matrix effects, requiring frequent maintenance. Therefore, common clean-up methods, such as dispersive solid-phase extraction, freeze-out of fats, or gel permeation chromatography, have been applied in clean-up. Automated clean-up using micro-solid-phase extraction (µSPE) is a recent development with several demonstrated advantages when employed in the analysis of pesticides and other contaminants in foods extracted with acetonitrile, but it has not yet been evaluated in this application using ethyl acetate for extraction. In this study, an automated procedure using µSPE cartridges was developed and established on an x,y,z robotic sampler for the raw extract clean-up and preparation of diluted samples for injection on a GC-MS/MS system. Validation experiments for 212 pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in lettuce, avocado, raspberry, paprika, egg, and liver extracts were performed using µSPE with MgSO4, PSA, C18, and CarbonX. The performance in routine operation is briefly discussed.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos , Acetonitrilos/química
4.
Chem Biodivers ; : e202400873, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900486

RESUMEN

This study explores the anti-inflammatory potential of an endophytic fungus, Trametes versicolor CL-1, isolated from the fruit tissues of Rosa roxburghii. Morphological and molecular analyses confirmed the identity of CL-1. An ethyl acetate extract (CL-E) from its fermentation broth was subjected to UPLC-HRMS and GNPS molecular networking. The analysis revealed a diverse array of secondary metabolites, including 11 terpenes, 7 flavonoids, 10 cinnamic acid derivatives, 6 oligopeptides, and 9 fatty acids, as verified by LC-MS/MS. Notably, CL-E exhibited significant in vitro anti-inflammatory activity in RAW264.7 cells. Furthermore,  molecular docking studies predicted favorable binding interactions of key compounds 1 within CL-E with the NLRP3 inflammasome (PDB ID: 6NPY). These findings suggest T. versicolor CL-1 as a promising source of natural anti-inflammatory agents and unveil R. roxburghii as a potential reservoir for discovering novel bioactive metabolites.

5.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063091

RESUMEN

Allomyrina dichotoma larvae (ADL) is an insect type that is used ethnopharmacologically to treat various diseases; however, its use as an antiaging treatment has not been widely studied. Previously, we found that an ethyl acetate (EA) fraction derived from an ADL extract (ADLE) has a high polyphenol content and antioxidant properties. In this study, we identified the underlying molecular mechanism for the protective effect of the EA fraction against UVB-induced photodamage in vitro and ex vivo. UVB treatment increased intracellular reactive oxygen species levels and DNA damage; the latter of which was significantly decreased following cotreatment with the EA fraction. Biological markers of aging, such as p16INK4a, p21WAF1, and senescence-associated ß-gal levels, were induced by UVB treatment but significantly suppressed following EA-fraction treatment. UVB-induced upregulation of matrix metalloproteinase (MMP)-1 and downregulation of COL1A1 were also reversed by EA-fraction treatment in both cells and a 3D skin model, which resulted in increased keratin and collagen deposition. Moreover, EA-fraction treatment inhibited the phosphorylation of MAPKs (p38, ERK, and JNK) and nuclear factor (NF-)-kB and decreased the levels of inflammatory cytokines in UVB-treated cells. The results indicate that an EA fraction from ADLE ameliorates UVB-induced degradation of COL1A1 by inhibiting MMP expression and inactivating the MAPK/NF-κB p65/AP-1 signaling pathway involved in this process.


Asunto(s)
Acetatos , Fibroblastos , Larva , Envejecimiento de la Piel , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Acetatos/farmacología , Acetatos/química , Larva/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , FN-kappa B/metabolismo
6.
Plant Foods Hum Nutr ; 79(2): 381-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436827

RESUMEN

Edgeworthia gardneri (Wall.) Meisn., a member of the genus Edgeworthia in the family Thymelaeaceae, has long been applied as an edible and medicinal plant in China. E. gardneria has a hypoglycemic effect and is used to prepare daily drinks for the prevention and treatment of diabetes. However, the hypoglycemic substances involved remain unknown. The present study aimed to screen the α-glucosidase-inhibitors of E. gardneri and analyze its chemical profile using a ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method. As a result, the ethyl acetate fraction (EAF) had significant α-glucosidase-inhibitory and antioxidant activities but did not show an α-amylase-inhibitory activity. A total of 67 compounds were identified in the EAF by UPLC-Q-TOF-MS/MS analysis; among them, 48 compounds were first discovered in the genus Edgeworthia. Additionally, five flavonoids, namely, isoorintin, secoisolaricirinol, tiliroside, chrysin, and kaempferol, had α-glucosidase-inhibitory activities. Rutin had a α-amylase-inhibitory activity. Daphnoretin, a kind of coumarin, has α-glucosidase and α-amylase-inhibitory activities. These findings enrich the chemical library of E. gardneria. EAF has a selective α-glucosidase-inhibitory activity, and flavonoids and coumarins may be the active components of EAF. E. gardneria has important value for developing multiple-target hypoglycemic drugs.


Asunto(s)
Antioxidantes , Flavonoides , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Espectrometría de Masas en Tándem , Thymelaeaceae , Inhibidores de Glicósido Hidrolasas/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Espectrometría de Masas en Tándem/métodos , Thymelaeaceae/química , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , alfa-Glucosidasas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/análisis , alfa-Amilasas/antagonistas & inhibidores , China
7.
Small ; 19(25): e2300571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919633

RESUMEN

High-energy-density Li metal batteries (LMBs) with Nickel (Ni)-rich cathode and Li-metal anode have attracted extensive attention in recent years. However, commercial carbonate electrolytes bring severe challenges including poor cycling stability, severe Li dendrite growth and cathode cracks, and narrow operating temperature window, especially hardly work at below -40 °C. In this work, a 2.4 m lithium difluoro(oxalato)borate (LiDFOB) in ethyl acetate (EA) solvent with 20 wt% fluorocarbonate (FEC) (named 2.4m-DEF) is designed to solve Li+ transport dynamic at low temperature and improve interfacial stability between electrolyte with Li anode or Ni-rich cathode. Beneficial lower freezing point, lower viscosity, and higher dielectric constant of EA solvent, the electrolyte exhibits excellent Li+ transport dynamic. Relying on the unique Li+ solvation structure, more DFOB- anions and FEC solvents are decomposed to establish a stable solid electrolyte interface at electrolyte/electrode. Therefore, LiNi0.9 Co0.05 Mn0.05 O2 (NCM90)/Li LMB with 2.4m-DEF enables excellent rate capability (184 mA h g-1 at 30 C) and stable cycling performance with ≈93.7% of capacity retention after 200 cycles at 20 C and room temperature. Moreover, the NCM90/Li LMB with 2.4m-DEF exhibits surprising ultra-low-temperature performance, showing 173 mA h g-1 at -40 °C and 152 mA h g-1 at -60 °C, respectively.

8.
Environ Sci Technol ; 57(9): 3864-3874, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36812295

RESUMEN

In this study, based on the comparison of two counterparts [Mn- and Cr-modified CeO2 nanobelts (NBs)] with the opposite effects, some novel mechanistic insights into the ethyl acetate (EA) catalytic combustion over CeO2-based catalysts were proposed. The results demonstrated that EA catalytic combustion consisted of three primary processes: EA hydrolysis (C-O bond breakage), the oxidation of intermediate products, and the removal of surface acetates/alcoholates. Rapid EA hydrolysis typically occurs on surface acid/base sites or hydroxyl groups, and the removal of surface acetates/alcoholates resulting from EA hydrolysis is considered the rate-determining step. The deposited acetates/alcoholates like a shield covered the active sites (such as surface oxygen vacancies), and the enhanced mobility of the surface lattice oxygen as an oxidizing agent played a vital role in breaking through the shield and promoting the further hydrolysis-oxidation process. The Cr modification impeded the release of surface-activated lattice oxygen from the CeO2 NBs and induced the accumulation of acetates/alcoholates at a higher temperature due to the increased surface acidity/basicity. Conversely, the Mn-substituted CeO2 NBs with the higher lattice oxygen mobility effectively accelerated the in situ decomposition of acetates/alcoholates and facilitated the re-exposure of surface active sites. This study may contribute to a further mechanistic understanding into the catalytic oxidation of esters or other oxygenated volatile organic compounds over CeO2-based catalysts.


Asunto(s)
Acetatos , Oxígeno , Hidrólisis , Oxidación-Reducción , Acetatos/química
9.
Environ Res ; 231(Pt 1): 116112, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182829

RESUMEN

This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl 2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 µg mL-1 with the IC50 value of 47.24 and 43.40 µg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 µg mL-1 and 207.38 µg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl 2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.


Asunto(s)
Antioxidantes , Bignoniaceae , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Corteza de la Planta/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/análisis , Flavonoides/farmacología , Flavonoides/análisis , Flores/química , Solventes , Fitoquímicos/análisis , Bignoniaceae/química
10.
Appl Microbiol Biotechnol ; 107(5-6): 1635-1648, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36786916

RESUMEN

Ethyl acetate is an important organic solvent and currently produced from fossil carbon resources. Microbial synthesis of this ester from sugar-rich waste could be an interesting alternative. Therefore, synthesis of ethyl acetate by Kluyveromyces marxinanus DSM 5422 from delactosed whey permeate (DWP) was studied in an aerated stirred bioreactor at 40 °C. DWP is mainly composed of residual lactose and minerals. The minerals inhibited yeast growth, as witnessed by an increased lag period, a reduced growth rate, and an extended process duration. All experiments were therefore carried out with diluted DWP. In a series of batch experiments, the pH of iron-deficient DWP medium varied between 4.8 and 5.9. The pH of the cultivation medium significantly influenced cell growth and product syntheses, with the highest ethyl acetate yield of 0.347 g g-1 and lowest by-product formation achieved at pH 5.1. It is likely that this effect is due to pH-dependent iron chelation, which affects the iron bioavailability and the intracellular iron content, thus affecting growth and metabolite synthesis. The viability of yeast cells was always high despite the harsh conditions in DWP medium, which enabled extended usage of the biomass in repeated-batch and fed-batch cultivations. These two culture techniques increased the volume of DWP processed per time by 32 and 84% for the repeated-batch and the fed-batch cultivation, respectively, without a drop of the ester yield. KEY POINTS: • Delactosed whey permeate was converted to ethyl acetate with a high rate and yield. • The formation of ethyl acetate in DWP medium at iron limitation is pH-dependent. • Highly active yeasts from batch processes enabled extension as fed and repeated batch.


Asunto(s)
Kluyveromyces , Suero Lácteo , Suero Lácteo/metabolismo , Kluyveromyces/metabolismo , Hierro/metabolismo , Fermentación , Proteína de Suero de Leche/metabolismo , Lactosa/metabolismo
11.
Chem Biodivers ; 20(4): e202300060, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36908182

RESUMEN

In this study, a series of meta-diamide compounds containing ethyl acetate group and their derivatives were designed and synthesized. Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda and Alfalfa sprouts were evaluated. Preliminary bioassays showed that some of the title compounds exhibited excellent insecticidal activities. Especially compound ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(4-cyanobenzoyl)glycinate and ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(6-fluoronicotinoyl)glycinate showed 100 % mortality at 0.1 mg/L against Plutella xylostella and Spodoptera frugiperda, same to broflanilide. Their LC50 against Plutella xylostella is 0.286 mg/L and 0.0218 mg/L, respectively. Moreover, compound ethyl N-(3-((2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)carbamoyl)-2-fluorophenyl)-N-(6-fluoronicotinoyl)glycinate displayed faster control efficacy than broflanilide at 0.1 mg/L. The results indicated that meta-diamide compounds containing ethyl acetate group could be developed as novel and promising insecticides.


Asunto(s)
Diamida , Insecticidas , Mariposas Nocturnas , Animales , Diamida/análogos & derivados , Diamida/farmacología , Insecticidas/química , Insecticidas/farmacología , Estructura Molecular , Spodoptera , Relación Estructura-Actividad
12.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092368

RESUMEN

Phenylacetaldehyde (PAH), an aromatic odorant, exists in varied fruits including overripe bananas and prickly pear cactus, the 2 major host fruits of Drosophila melanogaster. It acts as a potent ligand for the Ionotropic receptor 84a (IR84a) and the Odorant receptor 67a (OR67a), serving as an important food and courtship cue for adult fruit flies. Drosophila melanogaster larvae respond robustly to diverse feeding odorants, such as ethyl acetate (EA), an aliphatic ester. Since the chemical identity and concentration of an odorant are vital neural information handled by the olfactory system, we studied how larvae respond to PAH, an aromatic food odorant with aphrodisiac properties for adult flies. Our findings revealed that PAH attracted larvae significantly in a dose-dependent manner. Larvae could also be trained with PAH associated to appetitive and aversive reinforcers. Thus, like EA, PAH might serve as an important odorant cue for larvae, aiding in food tracking and survival in the wild. Since IR84a/IR8a complex primarily governs PAH response in adult flies, we examined expression of Ir84a and Ir8a in early third-instar larvae. Our experiments showed the presence of Ir8a, a novel finding. However, contrary to adult flies, PAH-responsive Ir84a was not found. Our behavioral experiments with Ir8a1 mutant larvae exhibited normal chemotaxis to PAH, whereas Orco1 mutant showed markedly reduced chemotaxis, indicating an OR-mediated neural circuitry for sensing of PAH in larvae. The results obtained through this study are significantly important as information on how larvae perceive and process PAH odorant at the neuronal level is lacking.


Asunto(s)
Drosophila melanogaster , Receptores Odorantes , Animales , Larva/fisiología , Olfato , Drosophila , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Odorantes , Frutas
13.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982233

RESUMEN

The aim of this work was to investigate the xanthine oxidase (XO)-inhibitory activity of ethanol extracts from Smilax china L. and to identify the active compounds in the ethyl acetate (EtOAc) fraction. Extraction of ethanol extracts from Smilax china L. and then ethanol extracts were concentrated, and the polyphenolic compounds were extracted with petroleum ether (PE), chloroform, EtOAc, n-butanol (n-BuOH), and residual ethanol fractions. Their effects on XO activity were then compared separately. The polyphenolic components of the EtOAc fraction were identified by HPLC and HPLC-mass spectrometry (HPLC-MS) analysis. Kinetic analysis demonstrated that all these extracts showed XO-inhibitory properties, and among them the EtOAc fraction had the strongest inhibitory effect (IC50 = 101.04 µg/mL). The inhibitory constant (Ki) of the EtOAc fraction on XO activity was 65.20 µg/mL, showing excellent inhibition on XO in the competitive mode. Sixteen compounds were identified from the EtOAc fraction. The study demonstrates that the EtOAc fraction of Smilax china L. may be a potential functional food to inhibit XO activity.


Asunto(s)
Extractos Vegetales , Smilax , Extractos Vegetales/farmacología , Extractos Vegetales/química , Xantina Oxidasa , Cinética , Etanol , China
14.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139176

RESUMEN

The success of bottom-up proteomic analysis frequently depends on the efficient removal of contaminants from protein or peptide samples before LC-MS/MS. For a peptide clean-up workflow, single-pot solid-phase-enhanced peptide sample preparation on carboxylate-modified paramagnetic beads (termed SP2) was evaluated for sodium dodecyl sulfate or polyethylene glycol removal from Arabidopsis thaliana tryptic peptides. The robust and efficient 40-min SP2 protocol, tested for 10-ng, 250-ng, and 10-µg peptide samples, was proposed and benchmarked thoroughly against the ethyl acetate extraction protocol. The SP2 protocol on carboxylated magnetic beads proved to be the most robust approach, even for the simultaneous removal of massive sodium dodecyl sulfate (SDS) and polyethylene glycol (PEG) contaminations from AT peptide samples in respect of the LC-MS/MS data outperforming ethyl acetate extraction.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Polietilenglicoles , Dodecil Sulfato de Sodio , Cromatografía Liquida/métodos , Proteómica/métodos , Benchmarking , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis
15.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36405420

RESUMEN

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

16.
Molecules ; 28(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37175357

RESUMEN

Anthyllis henoniana stems were harvested in two seasons: winter and spring (February and May 2021). In this study, we investigated the antioxidant (DPPH, ABTS, FRAP and TAC) and antimicrobial activities, total phenolic contents and total flavonoid contents of the obtained extracts (hexane, ethyl acetate and methanol). The results showed that ethyl acetate extract from stems harvested in winter exhibited the highest antioxidant activity, while ethyl acetate extract from the stems harvested in spring showed the most potent antibacterial and antifungal activities. To explain these differences, we investigated the phytochemical composition of these two extracts using liquid chromatography coupled with mass spectrometry. Therefore, 45 compounds were detected, from which we identified 20 compounds (flavonoids, triterpenoids, chalcones and phenolic acids); some were specific to the harvest month while others were common for both periods. Some of the major compounds detected in ethyl acetate (spring) were dihydrochalcone (Kanzonol Y, 8.2%) and flavanone (sophoraflavanone G, 5.9%), previously recognized for their antimicrobial effects. We therefore concluded that the difference in activities observed for the two harvest periods depends on the chemical composition of the extracts and the relative abundance of each compound.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estaciones del Año , Antiinfecciosos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Flavonoides/análisis
17.
J Environ Sci Health B ; 58(2): 158-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36840342

RESUMEN

The paper reports a multiresidue method that was validated on 220 multi-class pesticides in three major Indian soils, namely, (i) new alluvial soil (NAS); (ii) red lateritic soil (RS) and (iii) black soil (BS) from three different regions. An ethyl acetate-based extraction method with a freezing-out cleanup step was employed for sample preparation, followed by gas chromatography-tandem mass spectrometric analysis. The method that was initially optimized on BS worked satisfactorily for the other two soil matrices. At the spiking level of 10 µg/kg (LOQ), the recoveries were satisfactory (within 70-120%) with precision-RSDs, ≤20% (n = 6) for 85, 88.6, and 89% of compounds in BS, RS, and NAS respectively. At 20 µg/kg, the method performance was satisfactory in each soil for all pesticides. When this validated method was applied to analyse 25 field samples, 6 pesticides were detected in them. In each case, precision (RSD) was <20%. The method sensitivity, accuracy and precision complied with the SANTE/2020/12830 guidelines. The method can be applied for environmental monitoring and risk assessment purposes, thus aiding in regulating pesticide usage in agricultural fields. The limitations and future scope of the study are also discussed.HighlightsA multiresidue method is reported for simultaneous analysis of multi-class pesticides in diverse soilsThe method was validated on 220 pesticides in new alluvial, red lateritic and black soilsSample preparation involved extraction with ethyl acetate and cleanup by a freezing stepThe residues were estimated by gas chromatography tandem mass spectrometry (GC-MS/MS)The method accuracy and precision complied with the EU's SANTE guidelines.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Suelo , Extracción en Fase Sólida/métodos
18.
J Appl Biomed ; 21(4): 200-207, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112459

RESUMEN

The role of oxidants and proinflammatory cytokines in the pathogenesis of pneumonia caused by Staphylococcus aureus (S. aureus) has been demonstrated. The present study aims to investigate the protective effect of ethyl acetate extract (EtOAc) obtained from Usnea longissima (UL) against acute oxidative and inflammatory lung damage due to S. aureus infection in rats. Albino Wistar-type male rats were divided into three groups: Healthy (HG), S. aureus inoculated (SaG), and S. aureus inoculated + ULEtOAc administered (SUL). SaG (n = 6) and SUL (n = 6) group rats' left nostrils (excluding HG) were inoculated with 0.1 ml bacterial mixture. After 24 hours, ULEtOAc (50 mg/kg) was administered orally to the SUL group, and the same volume of normal saline was administered orally to the HG (n = 6) and SaG groups. This procedure was performed once a day for seven days. Levels of oxidant and antioxidant parameters such as malondialdehyde (MDA) and total glutathione (tGSH), as well as pro-inflammatory cytokine levels such as nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-one beta (IL-1ß), were measured in removed lung tissues. Tissues were also examined histopathologically. Biochemical results showed that ULEtOAc significantly suppressed the increase of MDA, NF-κB, TNF-α, and IL-1ß levels and the decrease of tGSH caused by S. aureus in lung tissue. S. aureus inoculation caused severe mononuclear cell infiltration in interstitial areas, severe lymphoid hyperplasia in bronchial-associated lymphoid tissue and severe alveolar edema, histopathologically. Treatment with ULEtOAc had an attenuating effect on these histopathological findings. Experimental results from this study suggest that ULEtOAc may be beneficial in treating S. aureus-induced oxidative and inflammatory lung damage.


Asunto(s)
Neumonía , Infecciones Estafilocócicas , Ratas , Masculino , Animales , Staphylococcus aureus/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Neumonía/tratamiento farmacológico , Neumonía/patología , Glutatión/metabolismo , Glutatión/farmacología , Ratas Wistar , Pulmón/metabolismo , Pulmón/patología , Citocinas , Estrés Oxidativo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología
19.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3701-3714, 2023 Jul.
Artículo en Zh | MEDLINE | ID: mdl-37475061

RESUMEN

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Asunto(s)
Artemisia , Medicamentos Herbarios Chinos , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Medicamentos Herbarios Chinos/farmacología , Interleucina-6
20.
J Food Sci Technol ; 60(8): 2275-2285, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37273572

RESUMEN

Whey protein was fortified with a microencapsulated fraction of Stevia rebaudiana, in the proportion 1:4 (w/w), with maltodextrin from the elite variety of Stevia UEM-13, rich in antioxidant compounds, and evaluated its antioxidant and antidiabetic potential in vitro. The fraction in ethyl acetate, the microencapsulated fraction, the whey protein obtained by membrane and a commercial whey protein were characterized and were also investigated solubility, microencapsulation efficiency and stability and digestion in vitro. In addition, these products and two formulations of the icroencapsulated fraction with the obtained whey protein were tested for their potential to inhibit the α-amylase and α-glucosidase enzyme (antidiabetic activity). The microencapsulated fraction (0.5%) and the supplement fortified with the 20% fraction microencapsulated showed inhibitory potential for the enzyme. As for the α-glucosidase enzyme, all products tested showed inhibition, with the formulation with 1.6% microencapsulated fraction added to whey protein being significantly higher. The microencapsulated fraction showed better solubility and stability, including in vitro digestion analysis, and showed antioxidant and antidiabetic capacity. A sensory evaluation was performed with panelists who regularly consume whey protein supplements and products with stevia and the supplement formulation with 1.6 g microencapsulated stevia per 100 g of whey protein have good sensory acceptance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA