Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252964

RESUMEN

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Asunto(s)
Fibrilina-1 , Síndrome de Marfan , Animales , Ratones , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Stem Cells ; 42(2): 128-145, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38152966

RESUMEN

Neurogenesis begins with neural stem cells undergoing symmetric proliferative divisions to expand and then switching to asymmetric differentiative divisions to generate neurons in the developing brain. Chromatin regulation plays a critical role in this switch. Histone lysine-specific demethylase LSD1 demethylates H3K4me1/2 and H3K9me1/2 but the mechanisms of its global regulatory functions in human neuronal development remain unclear. We performed genome-wide ChIP-seq of LSD1 occupancy, RNA-seq, and Histone ChIP-seq upon LSD1 inhibition to identify its repressive role in human neural stem cells. Novel downstream effectors of LSD1 were identified, including the Notch signaling pathway genes and human-neural progenitor-enriched extracellular matrix (ECM) pathway/cell adhesion genes, which were upregulated upon LSD1 inhibition. LSD1 inhibition led to decreased neurogenesis, and overexpression of downstream effectors mimicked this effect. Histone ChIP-seq analysis revealed that active and enhancer markers H3K4me2, H3K4me1, and H3K9me1 were upregulated upon LSD1 inhibition, while the repressive H3K9me2 mark remained mostly unchanged. Our work identifies the human-neural progenitor-enriched ECM pathway/cell adhesion genes and Notch signaling pathway genes as novel downstream effectors of LSD1, regulating neuronal differentiation in human neural stem cells.


Asunto(s)
Histonas , Células-Madre Neurales , Humanos , Adhesión Celular/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética
3.
BMC Cancer ; 24(1): 1211, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350022

RESUMEN

BACKGROUND: In hepatocellular carcinoma (HCC) treatment, first-line targeted therapy in combination with immune checkpoint inhibitors (ICIs) has improved patient prognosis, but the 5-year survival rate is far from satisfactory. Studies have shown that the extracellular matrix (ECM) is an essential part of the tumour microenvironment (TME) and participates in the progression of malignant tumours. ECM remodelling can enhance matrix stiffness in cirrhosis patients, induce an immunosuppressive microenvironment network, and affect the efficacy of targeted therapies and ICIs for treating HCC. However, the exact mechanism is still unclear. METHODS: We downloaded data from public databases, selected differentially expressed ECM proteins associated with matrix stiffness, constructed and validated a prognostic model of HCC using Lasso Cox regression, and investigated the roles and mechanism of one of the ECM proteins, dynein light chain LC8-type 1 (DYNLL1), in HCC proliferation, migration, and apoptosis via in vitro experiments. RESULTS: In this study, the risk score of the matrix stiffness-related ECM protein model effectively predicted the prognosis of HCC patients. The high- and low-risk subgroups of the model also showed differences in immune cells, immune functions, and drug sensitivity. DYNLL1 promoted HCC cell progression and migration and inhibited HCC cell apoptosis through the Wnt/ß-catenin pathway in vitro. CONCLUSION: The expression of matrix stiffness-related ECM proteins could be an independent predictor of HCC prognosis. DYNLL1, an oncogenic gene in HCC, has the potential to be a new target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Matriz Extracelular , Neoplasias Hepáticas , Microambiente Tumoral , Vía de Señalización Wnt , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Matriz Extracelular/metabolismo , Pronóstico , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/genética , Proliferación Celular , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Masculino
4.
Eur Spine J ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39299936

RESUMEN

PURPOSE: Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS: Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS: We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION: The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.

5.
Gastroenterology ; 163(4): 1064-1078.e10, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35788346

RESUMEN

BACKGROUND & AIMS: Epidemiological studies have established alcohol and smoking as independent risk factors for recurrent acute pancreatitis and chronic pancreatitis. However, the molecular players responsible for the progressive loss of pancreatic parenchyma and fibroinflammatory response are poorly characterized. METHODS: Tandem mass tag-based proteomic and bioinformatics analyses were performed on the pancreata of mice exposed to alcohol, cigarette smoke, or a combination of alcohol and cigarette smoke. Biochemical, immunohistochemistry, and transcriptome analyses were performed on the pancreatic tissues and primary acinar cells treated with cerulein in combination with ethanol (50 mmol/L) and cigarette smoke extract (40 µg/mL) for the mechanistic studies. RESULTS: A unique alteration in the pancreatic proteome was observed in mice exposed chronically to the combination of alcohol and cigarette smoke (56.5%) compared with cigarette smoke (21%) or alcohol (17%) alone. The formation of toxic metabolites (P < .001) and attenuated unfolded protein response (P < .04) were the significantly altered pathways on combined exposure. The extracellular matrix (ECM) proteins showed stable malondialdehyde-acetaldehyde (MAA) adducts in the pancreata of the combination group and chronic pancreatitis patients with a history of smoking and alcohol consumption. Interestingly, MAA-ECM adducts significantly suppressed expression of X-box-binding protein-1, leading to acinar cell death in the presence of alcohol and smoking. The stable MAA-ECM adducts persist even after alcohol and smoking cessation, and significantly delay pancreatic regeneration by abrogating the expression of cyclin-dependent kinases (CDK7 and CDK5) and regeneration markers. CONCLUSIONS: The combined alcohol and smoking generate stable MAA-ECM adducts that increase endoplasmic reticulum stress and acinar cell death due to attenuated unfolded protein response and suppress expression of cell cycle regulators. Targeting aldehyde adducts might provide a novel therapeutic strategy for the management of recurrent acute pancreatitis and chronic pancreatitis.


Asunto(s)
Acetaldehído , Pancreatitis Crónica , Acetaldehído/metabolismo , Enfermedad Aguda , Aldehídos , Animales , Ceruletida , Quinasas Ciclina-Dependientes/metabolismo , Etanol/toxicidad , Proteínas de la Matriz Extracelular/metabolismo , Malondialdehído/metabolismo , Ratones , Proteoma/metabolismo , Proteómica , Fumar/efectos adversos , Respuesta de Proteína Desplegada
6.
Clin Oral Investig ; 27(2): 691-703, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401068

RESUMEN

OBJECTIVE: To identify the effect of two chitosan solutions on the release of root dentin matrix proteins and to describe the chemical changes observed following conditioning with chelating agents. MATERIALS AND METHODS: The release of dentin sialoprotein (DSP), transforming growth factor-beta 1 (TGF-ß1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor-BB (PDGF-BB) with different chelating agents, including ethylenediaminetetraacetic acid (EDTA), chitosan solution (CS), and nanoparticulate chitosan (CSnp), was investigated. DSP was quantified using an enzyme-linked immunosorbent assay (ELISA). TGF-ß1, VEGF, and PDGF-BB were quantified using a cytokine bead panel (CBA). Raman spectroscopy was performed to identify surface chemical changes. Statistical analysis was performed using Kruskal-Wallis test with Mann-Whitney-Wilcoxon rank-sum test (p < 0.05). RESULTS: TGF-ß1, VEGF, and DSP solubilized in all irrigants tested. CSnp showed the highest concentration of DSP. PDGF-BB did not exceed the detection limits. Raman spectroscopy revealed a decrease in the phosphate and carbonate peaks, representing the chelating effect of EDTA, CS, and CSnp. Additionally, CSnp showed the greatest preservation of the amide I and III content. CONCLUSION: Proteins can be released from dentin via EDTA, CS, and CSnp conditioning. Raman spectroscopic revealed changes in the inorganic content of the root dentin after chelation. Furthermore, use of CSnp facilitated a preservation of the organic content. CLINICAL RELEVANCE: Chelation allows the release of proteins, justifying the use of chelating agents in regenerative endodontics. The chitosan-dentin matrix interaction also promotes the protection of the organic content as an additional benefit to its protein releasing effect.


Asunto(s)
Quitosano , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Quitosano/farmacología , Ácido Edético/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacología , Quelantes/farmacología , Quelantes/metabolismo , Dentina , Irrigantes del Conducto Radicular/farmacología
7.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446165

RESUMEN

Hypertrophic scars and keloids are two different manifestations of excessive dermal fibrosis and are caused by an alteration in the normal wound-healing process. Treatment with radiofrequency (RF)-based therapies has proven to be useful in reducing hypertrophic scars. In this study, the effect of one of these radiofrequency therapies, Capacitive Resistive Electrical Transfer Therapy (CRET) on biomarkers of skin fibrosis was investigated. For this, in cultures of human myofibroblasts treated with CRET therapy or sham-treated, proliferation (XTT Assay), apoptosis (TUNEL Assay), and cell migration (Wound Closure Assay) were analyzed. Furthermore, in these cultures the expression and/or localization of extracellular matrix proteins such as α-SMA, Col I, Col III (immunofluorescence), metalloproteinases MMP1 and MMP9, MAP kinase ERK1/2, and the transcription factor NFκB were also investigated (immunoblot). The results have revealed that CRET decreases the expression of extracellular matrix proteins, modifies the expression of the metalloproteinase MMP9, and reduces the activation of NFκB with respect to controls, suggesting that this therapy could be useful for the treatment of fibrotic pathologies.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/metabolismo , Piel/metabolismo , Metaloproteinasa 9 de la Matriz , Queloide/patología , Proteínas de la Matriz Extracelular , Fibroblastos/metabolismo
8.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175951

RESUMEN

Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket soft tissue (ESsT) at 8 weeks of healing. Compared to subepithelial connective tissue graft (CTG), qRT-PCR analyses revealed a dramatic enrichment of the ESsT in osteogenic differentiation markers. However, ESsT and CTG shared characteristics of nonspecialized soft connective tissue by expressing comparable levels of genes encoding abundant extracellular matrix (ECM) proteins. Genes encoding the transforming growth factor-ß1 (TGF-ß1) and its receptors were strongly enriched in the CTG, whereas the transcript for the insulin-like growth factor-1 (IGF-1) showed significantly high and comparable expression in both tissues. Mechanical stimulation, by the means of cyclic strain or matrix stiffness applied to primary ESsT cells (ESsT-C) and CTG fibroblasts (CTG-F) extracted from the tissue samples, revealed that stress-induced TGF-ß1 not exceeding 2.3 ng/mL, as measured by ELISA, in combination with IGF-1 up to 2.5 ng/mL was able to induce the osteogenic potential of ESsT-Cs. However, stiff matrices (50 kPa), upregulating the TGF-ß1 expression up to 6.6 ng/mL, caused downregulation of osteogenic gene expression in the ESsT-Cs. In CTG-Fs, endogenous or stress-induced TGF-ß1 ≥ 4.6 ng/mL was likely responsible for the complete lack of osteogenesis. Treatment of ESsT-Cs with TGF-ß1 and IGF-1 proved that, at specific concentrations, the two growth factors exhibited either an inductive-synergistic or a suppressive activity, thus determining the osteogenic and mineralization potential of ESsT-Cs. Taken together, our data strongly warrant the clinical exploration of ESsT as a graft in augmentative procedures during dental implant placement surgeries.


Asunto(s)
Alveolo Dental , Factor de Crecimiento Transformador beta1 , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Osteogénesis , Regeneración Ósea , Proteínas de la Matriz Extracelular
9.
J Biol Chem ; 297(6): 101169, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487762

RESUMEN

Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.


Asunto(s)
Colágeno/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Colágeno/química , Cristalografía por Rayos X , Perros/metabolismo , Proteínas del Choque Térmico HSP47/química , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
10.
Plant J ; 106(5): 1387-1400, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735457

RESUMEN

ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fumonisinas/metabolismo , Fosfolipasas/metabolismo , Transducción de Señal , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Muerte Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Peroxidasas/genética , Peroxidasas/metabolismo , Fosfolipasas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Estrés Fisiológico , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
11.
Stroke ; 53(10): 3238-3242, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904018

RESUMEN

Poststroke infections are common complications of stroke and are highly associated with poor outcomes for patients. Stroke induces profound immunodepression coupled with alterations to autonomic signaling, which together render the body more susceptible to infection from without (nosocomial/community-acquired infection) and from within (commensal bacterial infection). Critical to the hypothesis of commensal infection is the phenomenon of poststroke gut permeability and gut dysbiosis. Few studies have provided adequate explanations for the mechanisms underlying the molecular alterations that produce a more permeable gut and perturbed gut microbiota after stroke. A dysregulation in the production of matrix MMP-7 (metalloproteinase-7) may play a critical role in the progression of gut permeability after stroke. By cleaving junctional and extracellular matrix proteins, MMP-7 is capable of compromising gut barrier integrity. Because of MMP-7's unique abundance in the small intestine and its capacity to be induced in states of bacterial invasion and inflammation, along with its unique degradative capability, MMP-7 may be crucially important to the progression of gut permeability after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Proteínas de la Matriz Extracelular , Humanos , Metaloproteinasa 7 de la Matriz , Permeabilidad , Accidente Cerebrovascular/complicaciones
12.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007300

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Asunto(s)
Fibroblastos Asociados al Cáncer/fisiología , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/patología , Proteínas de Homeodominio/fisiología , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/patología , Animales , Plasticidad de la Célula/fisiología , Modelos Animales de Enfermedad , Ratones
13.
FASEB J ; 35(7): e21692, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118087

RESUMEN

For metastasis formation, individual cells from a primary tumor must migrate toward other tissues. The aim of this study was to determine if mesenchymal stromal cells (MSCs) from human bone marrow are able to emit signals that induce this migratory activity in cancer cells. We separated the supernatant of MSCs derived from human bone marrow by size-exclusion and ion-exchange chromatography and have subsequently studied the migratory behavior of the prostate cancer cell line PC3 and the breast cancer cell line MDA-MB-231 toward the respective fractions in a transwell migration assay. We identified the extracellular matrix (ECM) proteins type I collagen, type III collagen, fibronectin, and laminin 421 as potential drivers of cancer cell migration. These results could be reproduced using the corresponding isolated or recombinant ECM proteins. Knockdown of the gene encoding beta 1 integrin, an important cell surface receptor for fibronectin, has led to inhibition of cancer cell migration. This supports the hypothesis that beta 1 integrin signaling represents an initial event that leads to metastasis, and that signaling is triggered by binding of integrin heterodimers to ECM molecules. Further characterization of signaling factors and their respective receptors will have implications for anticancer drug development.


Asunto(s)
Movimiento Celular , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Laminina/metabolismo , Células Madre Mesenquimatosas/citología , Neoplasias/patología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Laminina/genética , Células Madre Mesenquimatosas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Células Tumorales Cultivadas
14.
Circ Res ; 127(2): 207-224, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32228120

RESUMEN

RATIONALE: One goal of cardiac tissue engineering is the generation of a living, human pump in vitro that could replace animal models and eventually serve as an in vivo therapeutic. Models that replicate the geometrically complex structure of the heart, harboring chambers and large vessels with soft biomaterials, can be achieved using 3-dimensional bioprinting. Yet, inclusion of contiguous, living muscle to support pump function has not been achieved. This is largely due to the challenge of attaining high densities of cardiomyocytes-a notoriously nonproliferative cell type. An alternative strategy is to print with human induced pluripotent stem cells, which can proliferate to high densities and fill tissue spaces, and subsequently differentiate them into cardiomyocytes in situ. OBJECTIVE: To develop a bioink capable of promoting human induced pluripotent stem cell proliferation and cardiomyocyte differentiation to 3-dimensionally print electromechanically functional, chambered organoids composed of contiguous cardiac muscle. METHODS AND RESULTS: We optimized a photo-crosslinkable formulation of native ECM (extracellular matrix) proteins and used this bioink to 3-dimensionally print human induced pluripotent stem cell-laden structures with 2 chambers and a vessel inlet and outlet. After human induced pluripotent stem cells proliferated to a sufficient density, we differentiated the cells within the structure and demonstrated function of the resultant human chambered muscle pump. Human chambered muscle pumps demonstrated macroscale beating and continuous action potential propagation with responsiveness to drugs and pacing. The connected chambers allowed for perfusion and enabled replication of pressure/volume relationships fundamental to the study of heart function and remodeling with health and disease. CONCLUSIONS: This advance represents a critical step toward generating macroscale tissues, akin to aggregate-based organoids, but with the critical advantage of harboring geometric structures essential to the pump function of cardiac muscle. Looking forward, human chambered organoids of this type might also serve as a test bed for cardiac medical devices and eventually lead to therapeutic tissue grafting.


Asunto(s)
Bioimpresión/métodos , Diferenciación Celular , Miocitos Cardíacos/fisiología , Organoides/fisiología , Ingeniería de Tejidos/métodos , Potenciales de Acción , Proliferación Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Contracción Miocárdica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Organoides/citología , Organoides/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 41(3): 1218-1228, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33472398

RESUMEN

OBJECTIVE: COMP (cartilage oligomeric matrix protein) is abundantly expressed in the cardiovascular system, cartilage, and atherosclerotic plaques. We investigated if the total COMP (COMPtotal) and COMP neoepitope (COMPneo) with other cardiovascular markers and clinical parameters could identify symptomatic carotid stenosis. Approach and Results: Blood samples were collected from patients with symptomatic carotid stenosis (stenosis, n=50), patients with stroke without carotid stenosis but small plaques (plaque, n=50), and control subjects (n=50). COMPtotal and COMPneo were measured using an ELISA. Ninety-two cardiovascular disease markers were measured by the Olink CVD kit. The presence of native COMP and COMPneo was determined by immunohistochemistry. The concentration of COMPneo was higher and COMPtotal was lower in the stenosis group. When the concentration was compared between the stenosis and control groups, IL-1ra (interleukin-1 receptor antagonist protein), IL6 (interleukin-6), REN (Renin), MMP1 (matrix metalloproteinase-1), TRAIL-R2 (tumor necrosis factor-related apoptosis-inducing ligand receptor 2), ITGB1BP2 (integrin beta 1 binding protein 2), and COMPneo were predictive of stenosis. Conversely, KLK6 (kallikrein-6), COMPtotal, NEMO (nuclear factor-kappa-B essential modulator), SRC (Proto-oncogene tyrosine-protein kinase Src), SIRT2 (SIR2-like protein), CD40 (cluster of differentiation 40), TF (tissue factor), MP (myoglobin), and RAGE (receptor for advanced glycation end-products) were predictive of the control group. Model reproducibility was good with the receiver operating characteristic plot area under the curve being 0.86. When comparing the plaque group and stenosis group, COMPneo, GAL (galanin), and PTX3 (pentraxin-related protein PTX3) were predictive of stenosis. Model reproducibility was excellent (receiver operating characteristic plot area under the curve 0.92). COMPneo was detected in smooth muscle-, endothelial-, and foam-cells in carotid stenosis. CONCLUSIONS: Degradation of COMP may be associated with atherosclerosis progression and generation of a specific COMP fragment-COMPneo. This may represent a novel biomarker that together with COMPtotal and other risk-markers could be used to identify symptomatic carotid stenosis. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Estenosis Carotídea/sangre , Proteína de la Matriz Oligomérica del Cartílago/sangre , Proteína de la Matriz Oligomérica del Cartílago/inmunología , Epítopos/sangre , Anciano , Biomarcadores/sangre , Biomarcadores/metabolismo , Estenosis Carotídea/inmunología , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Epítopos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Placa Aterosclerótica/sangre , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/metabolismo , Proto-Oncogenes Mas , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/inmunología
16.
Anal Bioanal Chem ; 414(1): 575-585, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34272591

RESUMEN

The understanding of the initial cell adhesion to biomaterials is crucial for the survival of implants. The manifold possibilities to tailor an implant surface and the diverse requirements for different implant applications necessitate a timesaving and highly parallelized analytical methodology. Due to its intrinsic advantages (label-free, time-resolved, robust against temperature fluctuations, and particularly the multiplexing possibilities), single colour reflectometry (SCORE) is used for the first time to investigate cell adhesion to different extracellular matrix protein-coated surfaces. The excellent correlation between the novel SCORE technology and well-established reference methods proves that the results obtained by using this direct optical method are able to reflect the cell binding processes at the transducer surface. Additionally, the high time resolution of SCORE revealed the differences in the adhesion behaviour of the cells on the different extracellular matrix protein-coated glass slides during the initial adsorption phase and during the spreading of the cells on the surfaces. Therefore, we conclude that SCORE is a perfectly suited methodology for studying the entire cell adsorption process, including morphological changes, and shows great potential for other cell-based sensing applications.


Asunto(s)
Materiales Biocompatibles , Proteínas de la Matriz Extracelular , Adsorción , Adhesión Celular , Color , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Propiedades de Superficie
17.
Platelets ; 33(5): 692-699, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927530

RESUMEN

In vitro flow assays utilizing microfluidic devices are often used to study human platelets as an alternative to the costly animal models of hemostasis and thrombosis that may not accurately represent human platelet behavior in vivo. Here, we present a tunable in vitro model to study platelet behavior in human whole blood flow that includes both an inflamed, damaged endothelium and exposed extracellular matrix. We demonstrate that the model is adaptable across various anticoagulants, shear rates, and proteins for endothelial cell culture without the need for a complicated, custom-designed device. Furthermore, we verified the ability of this 'damaged endothelium' model as a screening method for potential anti-platelet or anti-thrombotic compounds using a P2Y12 receptor antagonist (ticagrelor), a pan-selectin inhibitor (Bimosiamose), and a histamine receptor antagonist (Cimetidine). These compounds significantly decreased platelet adhesion to the damaged endothelium, highlighting that this model can successfully screen anti-platelet compounds that target platelets directly or the endothelium indirectly.


Asunto(s)
Adhesividad Plaquetaria , Trombosis , Animales , Plaquetas/metabolismo , Endotelio , Endotelio Vascular/metabolismo , Hemostasis , Humanos , Trombosis/metabolismo
18.
Oral Dis ; 28(2): 326-335, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33188646

RESUMEN

Osteopontin (OPN) is a calcium-binding glycol-phosphoprotein present in many physiologic and pathological processes. This protein can control bone cell adhesion, osteoclastic activity, and bone matrix mineralization. However, its participation in pathological processes such as atherosclerosis, sarcoidosis, tuberculosis, and cancer have been described. Some studies have shown that OPN may participate in the development and progression of oral cancer. Although the role of OPN in oral cancer is not fully understood, some studies have suggested that this protein may induce malignant phenotype of cells by activation of PI3K/AKT/mTOR pathway, which favors cell proliferation, invasion, metastasis, angiogenesis, and failure of treatment. This review discusses the possible mechanism of involvement of OPN in oral cancer and its potential clinical application in diagnosis and prognosis.


Asunto(s)
Neoplasias de la Boca , Osteopontina , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Osteopontina/genética , Fosfatidilinositol 3-Quinasas/metabolismo
19.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163259

RESUMEN

The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Animales , Humanos , Miocardio/metabolismo
20.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456903

RESUMEN

The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-ß. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-ß signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-ß signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-ß signaling pathway molecules in ASMC and PF.


Asunto(s)
Asma , Eosinófilos , Proteínas ADAM , Alérgenos/metabolismo , Animales , Asma/metabolismo , Colágeno/metabolismo , Decorina/genética , Dermatophagoides pteronyssinus/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Expresión Génica , Humanos , Pulmón/metabolismo , Miocitos del Músculo Liso/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA