Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.664
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417796

RESUMEN

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Asunto(s)
Carica , Glutatión Transferasa , Tiram , Carica/enzimología , Carica/genética , Fungicidas Industriales/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Genomics ; 116(4): 110869, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38797456

RESUMEN

Fusarium graminearum is an economically important phytopathogenic fungus. Chemical control remains the dominant approach to managing this plant pathogen. In the present study, we performed a comparative transcriptome analysis to understand the effects of four commercially used fungicides on F. graminearum. The results revealed a significant number of differentially expressed genes related to carbohydrate, amino acid, and lipid metabolism, particularly in the carbendazim and phenamacril groups. Central carbon pathways, including the TCA and glyoxylate cycles, were found to play crucial roles across all treatments except tebuconazole. Weighted gene co-expression network analysis reinforced the pivotal role of central carbon pathways based on identified hub genes. Additionally, critical candidates associated with ATP-binding cassette transporters, heat shock proteins, and chitin synthases were identified. The crucial functions of the isocitrate lyase in F. graminearum were also validated. Overall, the study provided comprehensive insights into the mechanisms of how F. graminearum responds to fungicide stress.


Asunto(s)
Proteínas Fúngicas , Fungicidas Industriales , Fusarium , Transcriptoma , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriales/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Regulación Fúngica de la Expresión Génica , Perfilación de la Expresión Génica
3.
Emerg Infect Dis ; 30(8): 1531-1541, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935978

RESUMEN

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/farmacología , Dinamarca/epidemiología , Antifúngicos/farmacología , Humanos , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Mutación , Fungicidas Industriales/farmacología , Genotipo
4.
BMC Plant Biol ; 24(1): 29, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172651

RESUMEN

BACKGROUND: Fusarium crown rot (FCR) is one of the most significant diseases limiting crop production in the Huanghuai wheat-growing region of China. Prothioconazole, a triazole sterol 14α-demethylation inhibitor (DMI) fungicide developed by the Bayer Crop Protection Company, is mainly registered for the prevention and control of wheat powdery mildew and stripe rust (China Pesticide Information Network). It is known to exhibit high activity against F. pseudograminearum, but further research, particularly regarding the potential for fungicide resistance, is required before it can be registered for the control of FCR in China. RESULTS: The current study found that the baseline sensitivity of 67 field isolates of F. pseudograminearum collected between 2019 and 2021 ranged between 0.016-2.974 µg/mL, with an average EC50 value of 1.191 ± 0.720 µg/mL (mean ± SD). Although none of the field isolates exhibited signs of resistance, three highly resistant mutants were produced by repeated exposure to prothioconazole under laboratory conditions. All of the mutants were found to exhibit significantly reduced growth rates on potato dextrose agar (PDA), as well as reduced levels of sporulation, which indicated that there was a fitness cost associated with the resistance. However, inoculation of wounded wheat coleoptiles revealed that the pathogenicity of the resistant mutants was little affected or actually increased. Molecular analysis of the genes corresponding to the prothioconazole target protein, FpCYP51 (FpCYP51A, FpCYP51B, and FpCYP51C), indicated that the resistant mutants contained three conserved substitutions (M63I, A205S, and I246V) that were present in the FpCYP51C sequence of all three mutants, as well as several non-conserved substations in their FpCYP51A and FpCYP51B sequences. Expression analysis revealed that the presence of prothioconazole (0.1 µg/mL) generally resulted in reduced expression of the three FpCYP51 genes, but that the three mutants exhibited more complex patterns of expression that differed in comparison to their parental isolates. The study found no evidence of cross-resistance between prothioconazole and any of the fungicides tested including three DMI fungicides tebuconazole, prochloraz, and flutriafol. CONCLUSIONS: Taken together these results not only provide new insight into the resistant mechanism and biological characteristics associated with prothioconazole resistance in F. pseudograminearum, but also strong evidence that prothioconazole could provide effective and sustained control of FCR, especially when applied in combination with other fungicides.


Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Triazoles/farmacología , China , Enfermedades de las Plantas/genética
5.
Small ; 20(36): e2401503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38705860

RESUMEN

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.


Asunto(s)
Fungicidas Industriales , Luz , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Azul de Metileno/química , Pythium/efectos de los fármacos
6.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531398

RESUMEN

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Asunto(s)
Fungicidas Industriales , Abejas , Animales , Néctar de las Plantas , Fenómenos de Retorno al Lugar Habitual , Temperatura , Condicionamiento Clásico
7.
Proc Biol Sci ; 291(2019): 20232939, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38503336

RESUMEN

Mounting evidence supporting the negative impacts of exposure to neonicotinoids on bees has prompted the registration of novel 'bee-friendly' insecticides for agricultural use. Flupyradifurone (FPF) is a butenolide insecticide that shares the same mode of action as neonicotinoids and has been assessed to be 'practically non-toxic to adult honeybees' using current risk assessment procedures. However, these assessments overlook some routes of exposure specific to wild bees, such as contact with residues in soil for ground-nesters. Co-exposure with other pesticides may also lead to detrimental synergistic effects. In a fully crossed experiment, we assessed the possible lethal and sublethal effects of chronic exposure to two pesticides used on Cucurbita crops, the insecticide Sivanto Prime (FPF) and the fungicide Quadris Top (azoxystrobin and difenoconazole), alone or combined, on solitary ground-nesting squash bees (Xenoglossa pruinosa). Squash bees exposed to Quadris Top collected less pollen per flower visit, while Sivanto-exposed bees produced larger offspring. Pesticide co-exposure induced hyperactivity in female squash bees relative to both the control and single pesticide exposure, and reduced the number of emerging offspring per nest compared to individual pesticide treatments. This study demonstrates that 'low-toxicity' pesticides can adversely affect squash bees under field-realistic exposure, alone or in combination.


Asunto(s)
4-Butirolactona/análogos & derivados , Insecticidas , Plaguicidas , Piridinas , Pirimidinas , Estrobilurinas , Abejas , Femenino , Animales , Plaguicidas/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad
8.
Appl Environ Microbiol ; 90(5): e0205623, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651929

RESUMEN

Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.


Asunto(s)
Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Azoles/farmacología , Humanos , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estados Unidos , Microbiología del Suelo , Pruebas de Sensibilidad Microbiana , Fungicidas Industriales/farmacología , Arachis/microbiología
9.
New Phytol ; 242(2): 675-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403925

RESUMEN

Most plants form root hyphal relationships with mycorrhizal fungi, especially arbuscular mycorrhizal fungi (AMF). These associations are known to positively impact plant biomass and competitive ability. However, less is known about how mycorrhizas impact other ecological interactions, such as those mediated by pollinators. We performed a meta-regression of studies that manipulated AMF and measured traits related to pollination, including floral display size, rewards, visitation, and reproduction, extracting 63 studies with 423 effects. On average, the presence of mycorrhizas was associated with positive effects on floral traits. Specifically, we found impacts of AMF on floral display size, pollinator visitation and reproduction, and a positive but nonsignificant impact on rewards. Studies manipulating mycorrhizas with fungicide tended to report contrasting results, possibly because fungicide destroys both beneficial and pathogenic microbes. Our study highlights the potential for relationships with mycorrhizal fungi to play an important, yet underrecognized role in plant-pollinator interactions. With heightened awareness of the need for a more sustainable agricultural industry, mycorrhizal fungi may offer the opportunity to reduce reliance on inorganic fertilizers. At the same time, fungicides are now ubiquitous in agricultural systems. Our study demonstrates indirect ways in which plant-belowground fungal partnerships could manifest in plant-pollinator interactions.


Asunto(s)
Fungicidas Industriales , Micorrizas , Suelo , Plantas/microbiología , Polinización , Reproducción , Microbiología del Suelo , Hongos , Raíces de Plantas/microbiología
10.
Glob Chang Biol ; 30(8): e17440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185562

RESUMEN

The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.


Asunto(s)
Seguridad Alimentaria , Fitomejoramiento , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Pandemias , Fungicidas Industriales , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA