Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2209637120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996109

RESUMEN

The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.


Asunto(s)
Bosques , Humedales , Humanos , Biodiversidad , Densidad de Población , Flujo Genético , Variación Genética
2.
Mol Ecol ; : e17523, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248016

RESUMEN

Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.

3.
Mol Ecol ; : e17503, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162219

RESUMEN

Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.

4.
Mol Ecol ; 33(15): e17452, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970373

RESUMEN

In migratory animals, high mobility may reduce population structure through increased dispersal and enable adaptive responses to environmental change, whereas rigid migratory routines predict low dispersal, increased structure, and limited flexibility to respond to change. We explore the global population structure and phylogeographic history of the bar-tailed godwit, Limosa lapponica, a migratory shorebird known for making the longest non-stop flights of any landbird. Using nextRAD sequencing of 14,318 single-nucleotide polymorphisms and scenario-testing in an Approximate Bayesian Computation framework, we infer that bar-tailed godwits existed in two main lineages at the last glacial maximum, when much of their present-day breeding range persisted in a vast, unglaciated Siberian-Beringian refugium, followed by admixture of these lineages in the eastern Palearctic. Subsequently, population structure developed at both longitudinal extremes: in the east, a genetic cline exists across latitude in the Alaska breeding range of subspecies L. l. baueri; in the west, one lineage diversified into three extant subspecies L. l. lapponica, taymyrensis, and yamalensis, the former two of which migrate through previously glaciated western Europe. In the global range of this long-distance migrant, we found evidence of both (1) fidelity to rigid behavioural routines promoting fine-scale geographic population structure (in the east) and (2) flexibility to colonise recently available migratory flyways and non-breeding areas (in the west). Our results suggest that cultural traditions in highly mobile vertebrates can override the expected effects of high dispersal ability on population structure, and provide insights for the evolution and flexibility of some of the world's longest migrations.


Asunto(s)
Migración Animal , Teorema de Bayes , Genética de Población , Filogeografía , Polimorfismo de Nucleótido Simple , Animales , Charadriiformes/genética , Charadriiformes/fisiología , Distribución Animal , Alaska
5.
Plant Cell Environ ; 47(7): 2426-2442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38497544

RESUMEN

Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1-a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.


Asunto(s)
Acetatos , Ciclopentanos , Mariposas Nocturnas , Oryza , Oxilipinas , Oryza/genética , Oryza/parasitología , Oryza/fisiología , Animales , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Mariposas Nocturnas/fisiología , Acetatos/farmacología , Acetatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Defensa de la Planta contra la Herbivoria
6.
Mol Phylogenet Evol ; 193: 108013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195012

RESUMEN

The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.


Asunto(s)
Arecaceae , Introgresión Genética , Humanos , Filogenia , Pool de Genes , Evolución Biológica , Aislamiento Reproductivo , Arecaceae/genética , Hibridación Genética , Flujo Génico , Especiación Genética
7.
Glob Chang Biol ; 30(6): e17352, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822670

RESUMEN

The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Orca , Animales , Orca/fisiología , Regiones Árticas , Especies en Peligro de Extinción , Canadá
8.
Ann Bot ; 134(1): 117-130, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38482916

RESUMEN

BACKGROUND AND AIMS: The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS: Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS: Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS: The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.


Asunto(s)
Clima , Flores , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/genética , Frío , Repeticiones de Microsatélite/genética , Variación Genética , Geografía , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Vernalización
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875589

RESUMEN

Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world's forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.


Asunto(s)
Flujo Génico/genética , Variación Genética/genética , Árboles/genética , Biodiversidad , Ecosistema , Bosques , Flujo Genético , Genética de Población , Repeticiones de Microsatélite/genética , Polen/genética , Polinización/genética , Dispersión de Semillas/fisiología , Semillas/genética , Árboles/crecimiento & desarrollo , Viento
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34697247

RESUMEN

Strawberry (Fragaria spp.) has emerged as a model system for various fundamental and applied research in recent years. In total, the genomes of five different species have been sequenced over the past 10 y. Here, we report chromosome-scale reference genomes for five strawberry species, including three newly sequenced species' genomes, and genome resequencing data for 128 additional accessions to estimate the genetic diversity, structure, and demographic history of key Fragaria species. Our analyses obtained fully resolved and strongly supported phylogenies and divergence times for most diploid strawberry species. These analyses also uncovered a new diploid species (Fragaria emeiensis Jia J. Lei). Finally, we constructed a pan-genome for Fragaria and examined the evolutionary dynamics of gene families. Notably, we identified multiple independent single base mutations of the MYB10 gene associated with white pigmented fruit shared by different strawberry species. These reference genomes and datasets, combined with our phylogenetic estimates, should serve as a powerful comparative genomic platform and resource for future studies in strawberry.


Asunto(s)
Evolución Biológica , Fragaria/genética , Genoma de Planta , Fragaria/clasificación , Variación Genética , Filogeografía , Pigmentación/genética , Selección Genética , Secuenciación Completa del Genoma
11.
Biochem Genet ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223334

RESUMEN

Bergenia ciliata (Haw.) Sternb. is a perennial medicinal herb distributed in Indian Himalayan Region (IHR). A total of eight populations of B. ciliata were collected from diverse locales of IHR, and 17 EST-SSR markers were used in this study. The present study revealed moderate genetic diversity at the locus level with the mean number of alleles (Na = 7.823), mean number effective of alleles (Ne = 3.375), mean expected heterozygosity (He = 0.570), and mean Shannon's diversity index (I = 1.264). The MSR (He = 0.543, I = 1.067) and DRJ populations (He = 0.309, I = 0.519) revealed the highest and lowest genetic diversity at the population level, respectively. AMOVA analysis showed that 81.76% of genetic variation was within populations, 10.55% was among populations, and 7.69% was among the regions. In addition, a moderate to high level of differentiation was found among the populations (FST = 0.182), which could be indicative of low to moderate gene flow (Nm = 0.669) in the B. ciliata populations. UPGMA and PCoA analysis revealed that eight populations could be differentiated into two groups, while the structure analysis of the 96 individuals differentiated into three groups. The Mantel test showed a positive relationship between genetic and geographical distance. The findings of this study will provide the development of conservation and germplasm management strategies for this valuable medicinal species.

12.
Anim Biotechnol ; 35(1): 2329106, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38497403

RESUMEN

This study analysed the genetic diversity and population structure of eight sheep breeds in Turkey and nearby countries. Moderate genetic diversity was observed, with the Sakiz (SKZ) exhibiting the highest diversity based on heterozygosity and allelic richness (AR) values. Genetic distances revealed differentiation between the populations, with the most significant divergence between the Cyprus Fat Tail (CFT) and SKZ breeds. PCA demonstrated SKZ and Chios (CHI) clustering together, indicating genetic similarity. Karakas (KRS), Norduz (NDZ), Afshari (AFS), Moghani (MOG) and others showed overlap, reflecting genetic relationships. Ancestry analysis found that KRS was predominantly inherited from the second ancestral population, while SKZ and NDZ were primarily derived from the first and second ancestral lineages. This illustrated the populations' diverse origins. Most genetic variation (96.84%) was within, not between, populations. The phi-statistic (PhiPT) indicated moderate differentiation overall. Phylogenetic analysis further demonstrated the genetic distinctiveness of the SKZ breed. ROH and FROH analyses showed that SKZ exhibited the highest homozygosity and inbreeding, while KRS displayed the lowest. This study elucidates these breeds' genetic diversity, structure and relationships. Key findings include moderate diversity, evidence of differentiation between breeds, diverse ancestral origins and distinct ROH patterns. This provides insights into the population's genetic characteristics and conservation requirements.


Asunto(s)
Genética de Población , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Filogenia , Polimorfismo de Nucleótido Simple/genética , Turquía , Endogamia , Variación Genética/genética
13.
J Dairy Sci ; 107(9): 7022-7037, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762109

RESUMEN

Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variants (CNV) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 CNV regions (CNVR), with 1,993 shared CNVR being found within the studied buffalo types. Analyzing CNVR highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVR that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci analysis revealed differentially expressed CNVR-derived genes (DECG) associated with milk production traits. Notably, known milk production-related genes were among these DECG, validating their relevance. Last, a GWAS identified 3 CNVR significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.


Asunto(s)
Búfalos , Variaciones en el Número de Copia de ADN , Leche , Animales , Búfalos/genética , Leche/metabolismo , Femenino , Genoma , Cruzamiento , Lactancia/genética
14.
Reprod Domest Anim ; 59(3): e14545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426375

RESUMEN

The conservation and sustainable utilization of cattle genetic resources necessitate a comprehensive understanding of their genetic diversity and population structure. This study provides an analysis of five native Turkish cattle breeds: Anatolian Black (ANB), Turkish Grey (TUR), Anatolian Southern Yellow (ASY), East Anatolian Red (EAR), and South Anatolian Red (SAN) using 50 K SNP data. These breeds were compared with three European breeds, Simmental (SIM), Holstein (HOL), and Jersey (JER), and three Asian Zebu breeds: Arabic Zebu (ZAR), Nelore (NEL), and Red Sindhi (RSI). Genetic diversity indices demonstrated moderate heterogeneity among the breeds, with TUR exhibiting the highest observed heterozygosity (Ho = 0.35). Wright's Fst values indicated significant genetic differentiation, particularly between Turkish breeds and both European (Fst = 0.035-0.071) and Asian breeds (Fst = 0.025-0.150). Principal component analysis distinguished the unique genetic profiles of each breed cluster. Admixture analysis revealed degrees of shared genetic ancestry, suggesting historical gene flow between Turkish, European, and Asian breeds. Analysis of molecular variance (AMOVA) attributed approximately 58% of the variation to population differences. Nei's genetic distances highlighted the closer genetic relatedness within Turkish breeds (distance ranges between 0.032 and 0.046) and suggested a more relative affinity of TUR with European breeds. The study's phylogenetic assessments elucidate the nuanced genetic relationships among these breeds, with runs of homozygosity (ROH) analysis indicating patterns of ancestral relatedness and moderate levels of inbreeding, particularly evident in Turkish breeds. Our findings provide valuable insights into the genetic landscape of Turkish cattle, offering a crucial foundation for informed conservation and breeding strategies aimed at preserving these breeds' genetic integrity and heritage.


Asunto(s)
Genética de Población , Endogamia , Animales , Bovinos/genética , Filogenia , Homocigoto , Variación Genética , Polimorfismo de Nucleótido Simple , Genotipo
15.
Exp Appl Acarol ; 92(3): 351-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38433162

RESUMEN

Dermatophagoides farinae (Acari: Pyroglyphidae) has been reported as one of the major sources of indoor allergens that trigger allergic disease in humans. In this study, the genetic diversity and differentiation of nine geographic populations of D. farinae were investigated by analyzing mitochondrial and nuclear genes (COI, Cytb, COI+Cytb, and ITS). The results showed high genetic diversity across the D. farinae populations. The BX (Benxi) population showed the lowest genetic diversity, possibly due to climatic causes. Significant genetic differentiation was observed among D. farinae populations based on mitochondrial genes. The analysis of molecular variance (AMOVA) results elucidated that the contribution to the rate of variation was primarily from among populations. Phylogenetic analysis and haplotype network based on mitochondrial genes both indicated significant geographic structure among D. farinae populations. The nine geographic populations of D. farinae were divided into two groups with the Qinling Mountains-Huai River Line serving as the boundary for spatial analysis of molecular variance analysis (SAMOVA). However, the Mantel test analysis showed no association between genetic differentiation and geographic distance because of the high level of gene flow among some populations through the transportation of stored food. Overall, these results indicate both significant genetic differentiation among D. farinae populations, but also significant gene exchange between them. Results from the analysis of the nuclear gene ITS differed from the mitochondrial genes due to differences in molecular markers between mitochondrial genes and nuclear genes. These observations improve our understanding of the genetic diversity and structure of D. farinae populations.


Asunto(s)
Dermatophagoides farinae , Variación Genética , Animales , Dermatophagoides farinae/genética , Filogenia , China , Haplotipos , Proteínas de Artrópodos/genética , Filogeografía
16.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36251862

RESUMEN

Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.


Asunto(s)
Evolución Biológica , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Alelos , África , Indias Occidentales , Genética de Población , Variación Genética
17.
J Virol ; 96(16): e0042122, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924924

RESUMEN

Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.


Asunto(s)
Begomovirus , Productos Agrícolas , Cucurbitaceae , Interacciones Microbiota-Huesped , Luteoviridae , Enfermedades de las Plantas , Malezas , Animales , Áfidos/virología , Begomovirus/clasificación , Begomovirus/genética , Productos Agrícolas/virología , Cucurbitaceae/virología , Genética de Población , Interacciones Microbiota-Huesped/genética , Luteoviridae/genética , Malva/virología , Filogenia , Enfermedades de las Plantas/virología , Malezas/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Solanum nigrum/virología
18.
Mol Ecol ; 32(7): 1791-1809, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36626108

RESUMEN

Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.


Asunto(s)
Evolución Biológica , Himenópteros , Animales , Himenópteros/genética , Insectos , Filogenia , Plantas/parasitología , Genómica , Hojas de la Planta/genética
19.
J Exp Bot ; 74(10): 3174-3187, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36882067

RESUMEN

Populations from different climates often show unique growth responses to temperature, reflecting temperature adaptation. Yet, whether populations from different climates differ in physiological temperature acclimation remains unclear. Here, we test whether populations from differing thermal environments exhibit different growth responses to temperature and differences in temperature acclimation of leaf respiration. We grew tropical and subtropical populations of two mangrove species (Avicennia germinans and Rhizophora mangle) under ambient and experimentally warmed conditions in a common garden at the species' northern range limit. We quantified growth and temperature responses of leaf respiration (R) at seven time points over ~10 months. Warming increased productivity of tropical populations more than subtropical populations, reflecting a higher temperature optimum for growth. In both species, R measured at 25 °C declined as seasonal temperatures increased, demonstrating thermal acclimation. Contrary to our expectations, acclimation of R was consistent across populations and temperature treatments. However, populations differed in adjusting the temperature sensitivity of R (Q10) to seasonal temperatures. Following a freeze event, tropical Avicennia showed greater freeze damage than subtropical Avicennia, while both Rhizophora populations appeared equally susceptible. We found evidence of temperature adaptation at the whole-plant scale but little evidence for population differences in thermal acclimation of leaf physiology. Studies that examine potential costs and benefits of thermal acclimation in an evolutionary context may provide new insights into limits of thermal acclimation.


Asunto(s)
Aclimatación , Clima , Aclimatación/fisiología , Temperatura , Respiración , Hojas de la Planta/fisiología
20.
J Evol Biol ; 36(2): 368-380, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36571263

RESUMEN

The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.


Asunto(s)
Adaptación Fisiológica , Odonata , Animales , Adaptación Fisiológica/fisiología , Flujo Genético , Europa (Continente) , Temperatura , Alas de Animales , Odonata/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA