Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 117(1): 113, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158755

RESUMEN

Despite the long research history on the genus Coelastrella, its species diversity and biotechnological potential have not been fully explored. For the first time, cluster analysis of morphological characteristics was done in the representatives of the said genus. The results obtained have shown that morphological similarity does not necessarily indicate a molecular genetic relationship. It the light of it, the taxonomic status of species can reliably be determined using specific DNA region, such as 18S-ITS1-5.8S-ITS2. The V4 and V9 regions of gene 18S rRNA are relatively conservative fragments which are not suitable for species identification. The ITS2 can be used as a "short barcode". Among the advanced machine methods for delimitation species, the most effective algorithm for distinguishing Coelastrella species was the Generalized Mixed Yule Coalescent (GMYC) method. This paper represented for the first time our comprehensive review of the works devoted to the analysis of the biotechnological potential of representatives of the genus Coelastrella and shows that fatty acid composition of the three main chemogroups within the studied genus differs. In the future, this may form the basis for predicting the composition of the fatty acid profile of new strains, which is important while searching for organisms with specified biotechnological properties. In conclusion, an integrative approach was employed to describe Coelastrella affinis sp. nov., a new species of the genus Coelastrella with high biotechnological potential. Also, a new description of C. thermophila var. astaxanthina comb. nov. was proposed.


Asunto(s)
Chlorophyceae , Filogenia , ARN Ribosómico 18S , Chlorophyceae/clasificación , Chlorophyceae/genética , ARN Ribosómico 18S/genética , Ácidos Grasos/análisis , Biotecnología , Código de Barras del ADN Taxonómico , ADN de Algas/genética , ADN de Algas/química , Análisis por Conglomerados , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética
2.
Biochemistry (Mosc) ; 89(7): 1251-1259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39218022

RESUMEN

Snow (cryotolerant) algae often form red (pink) spots in mountain ecosystems on snowfields around the world, but little is known about their physiology and chemical composition. Content and composition of pigments in the cells of the cryotolerant green microalgae Chloromonas reticulata have been studied. Analysis of carotenoids content in the green (vegetative) cells grown under laboratory conditions and in the red resting cells collected from the snow surface in the Subpolar Urals was carried out. Carotenoids such as neoxanthin, violaxanthin, anteraxanthin, zeaxanthin, lutein, and ß-carotene were detected. Among the carotenoids, the ketocarotenoid astaxanthin with high biological activity was also found. It was established that cultivation of the algae at low positive temperature (6°C) and moderate illumination (250 µmol quanta/(m2⋅s) contributed to accumulation of all identified carotenoids, including extraplastidic astaxanthin. In addition to the pigments, fatty acids accumulated in the algae cells. The data obtained allow us to consider the studied microalgae as a potentially promising species for production of carotenoids.


Asunto(s)
Carotenoides , Microalgas , Carotenoides/metabolismo , Carotenoides/química , Microalgas/metabolismo , Chlorophyta/metabolismo , Chlorophyta/química , Frío , Xantófilas/metabolismo
3.
Mar Drugs ; 21(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37755105

RESUMEN

The incidence of diseases brought on by resistant strains of micro-organisms, including tuberculosis, is rising globally as a result of the rapid rise in pathogenic micro-organism resistance to antimicrobial treatments. Secondary metabolites with potential for antibacterial activity are produced by cyanobacteria and microalgae. In this study, gram-positive (S. aureus, E. faecalis) and gram-negative (K. pneumoniae, A. baumannii, P. aeruginosa) bacteria were isolated from pulmonary tuberculosis patients receiving long-term antituberculosis therapy. The antimicrobial potential of extracts from the cyanobacteria Leptolyngbya cf. ectocarpi, Planktothrix agardhii, Arthrospira platensis, Rohotiella mixta sp. nov., Nanofrustulum shiloi, and Tetraselmis (Platymonas) viridis Rouchijajnen was evaluated. On mouse splenocytes and peritoneal macrophages, extracts of cyanobacteria and microalgae had inhibitory effects. In vitro studies have shown that cyanobacteria and microalgae extracts suppress the growth of bacteria and mycobacteria. At the same time, it has been demonstrated that cyanobacterial and microalgal extracts can encourage bacterial growth in a test tube. Additionally, the enhanced fucoxanthin fraction significantly reduced the development of bacteria in vitro. In a mouse experiment to simulate tuberculosis, the mycobacterial load in internal organs was considerably decreased by fucoxanthin. According to the information gathered, cyanobacteria and microalgae are potential sources of antibacterial compounds that can be used in the manufacturing of pharmaceutical raw materials.

4.
Crit Rev Food Sci Nutr ; : 1-12, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222060

RESUMEN

This review summarizes the available information about potential sources of vitamin B12, especially for people who follow a vegan or vegetarian diet and inhabitants of poor countries in the developing world. Cyanobacteria and microalgae approved for food purposes can play a critical role as promising and innovative sources of this vitamin. This work involves a discussion of whether the form of vitamin B12 extracted from microalgae/cyanobacteria is biologically available to humans, specifically focusing on the genera Arthrospira and Chlorella. It describes analyses of their biomass composition, cultivation requirements, and genetic properties in B12 production. Furthermore, this review discusses the function of cobalamin in microalgae and cyanobacteria themselves and the possibility of modification and cocultivation to increase the content of B12 in their biomass.

5.
J Appl Microbiol ; 132(2): 1543-1556, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34543487

RESUMEN

AIMS: Microalgae are ubiquitous in aquatic environments, including aquaculture farms, but few studies have delved into their phytoplankton diversity and bioremediation potential. In this study, the cultivable phytoplankton of a rainbow trout freshwater aquaculture farm was isolated, phylogenetically analysed and used to assemble a consortium to polish an aquaculture-derived effluent, with low concentrations of ammonium, nitrite and nitrate. METHODS AND RESULTS: Through standard plating in different selective media, a total of 15 microalgae strains were isolated from sludge from a rotary drum filtering system which removes suspended solids from the water exiting the facility. Based on 18S rRNA gene sequences, isolates were assigned to nine different genera of the Chlorophyta phylum: Asterarcys, Chlorella, Chloroccocum, Chlorosarcinopsis, Coelastrella, Desmodesmus, Micractinium, Parachlorella and Scenedesmus. Species from most of these genera are known to inhabit freshwater systems in Galicia and continental Spain, but the Coelastrella, Asterarcys or Parachlorella genera are not usually present in freshwater streams. In an onsite integrative approach, the capacity of a consortium of native microalgae isolates to grow on aquaculture-derived effluents and its nutrient removal capacity were assessed using a raceway pond. After 7 days, removal efficiencies of approximately 99%, 92% and 49% for ammonium, nitrite and nitrate, respectively, were achieved concomitantly with a microalgae biomass increase of ca. 17%. CONCLUSIONS: Sludge from the aquaculture filtering system presents a high diversity of microalgae species from the Chlorophyta phylum, whose application in a consortial approach revealed to be efficient to polish aquaculture-derived effluents with low nutrient content. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of native microalgae consortia from aquaculture systems can contribute to the development of efficient treatment systems for low-nutrient wastewater, avoiding nutrients release to the environment and promoting water recirculation. This may further strengthen the use of phycoremediation at the industrial scale, as an environment-friendly strategy.


Asunto(s)
Chlorella , Microalgas , Acuicultura , Biomasa , Agua Dulce , Nitrógeno/análisis , Polonia , Ríos , Aguas Residuales , Agua
6.
Extremophiles ; 25(2): 129-141, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33475805

RESUMEN

For mass culture of photosynthetic green microalgae, industrial flue gases can represent a low-cost resource of CO2. However, flue gases are often avoided, because they often also contain high levels of SO2 and/or NO2, which cause significant acidification of media to below pH 3 due to production of sulfuric and nitric acid. This creates an unsuitable environment for the neutrophilic microalgae commonly used in large-scale commercial production. To address this issue, we have looked at selecting acid-tolerant microalgae via growth at pH 2.5 carried out with samples bioprospected from an active smelter site. Of the eight wild samples collected, one consisting mainly of Coccomyxa sp. grew at pH 2.5 and achieved a density of 640 mg L-1. Furthermore, three previously bioprospected green microalgae from acidic waters (pH 3-4.5) near abandoned mine sites were also re-acclimated down to their in-situ pH environment after approximately 4 years spent at neutral pH. Of those three, an axenic culture of Coccomyxa sp. was the most successful at re-acclimating and achieved the highest density of 293.1 mg L-1 and maximum daily productivity of 38.8 mg L-1 day-1 at pH 3. Re-acclimation of acid-tolerant species is, therefore, achievable when directly placed at their original pH, but gradual reduction in pH is recommended to give the cells time to acclimate.


Asunto(s)
Chlorophyta , Microalgas , Aclimatación , Biomasa , Dióxido de Carbono , Gases , Concentración de Iones de Hidrógeno
7.
BMC Genomics ; 21(1): 743, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109102

RESUMEN

BACKGROUND: Scenedesmus obliquus belongs to green microalgae and is widely used in aquaculture as feed, which is also explored for lipid production and bioremediation. However, genomic studies of this microalga have been very limited. Cell self-flocculation of microalgal cells can be used as a simple and economic method for harvesting biomass, and it is of great importance to perform genome-scale studies for the self-flocculating S. obliquus strains to promote their biotechnological applications. RESULTS: We employed the Pacific Biosciences sequencing platform for sequencing the genome of the self-flocculating microalga S. obliquus AS-6-11, and used the MECAT software for de novo genome assembly. The estimated genome size of S. obliquus AS-6-11 is 172.3 Mbp with an N50 of 94,410 bp, and 31,964 protein-coding genes were identified. Gene Ontology (GO) and KEGG pathway analyses revealed 65 GO terms and 428 biosynthetic pathways. Comparing to the genome sequences of the well-studied green microalgae Chlamydomonas reinhardtii, Chlorella variabilis, Volvox carteri and Micractinium conductrix, the genome of S. obliquus AS-6-11 encodes more unique proteins, including one gene that encodes D-mannose binding lectin. Genes encoding the glycosylphosphatidylinositol (GPI)-anchored cell wall proteins, and proteins with fasciclin domains that are commonly found in cell wall proteins might be responsible for the self-flocculating phenotype, and were analyzed in detail. Four genes encoding both GPI-anchored cell wall proteins and fasciclin domain proteins are the most interesting targets for further studies. CONCLUSIONS: The genome sequence of the self-flocculating microalgal S. obliquus AS-6-11 was annotated and analyzed. To our best knowledge, this is the first report on the in-depth annotation of the S. obliquus genome, and the results will facilitate functional genomic studies and metabolic engineering of this important microalga. The comparative genomic analysis here also provides new insights into the evolution of green microalgae. Furthermore, identification of the potential genes encoding self-flocculating proteins will benefit studies on the molecular mechanism underlying this phenotype for its better control and biotechnological applications as well.


Asunto(s)
Chlorella , Microalgas , Scenedesmus , Biomasa , Glicolatos , Microalgas/genética
8.
J Food Sci Technol ; 57(3): 1090-1099, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32123430

RESUMEN

The freshwater green microalga Scenedesmus obliquus was cultivated to enhance the contents of proteins, carbohydrates and lipids by using Box-Behnken experimental design. S. obliquus was cultured under phototrophic conditions by using Bold's Basal Medium with different cultivation parameters including pH (7, 8 and 9), salinity (10, 30 and 50 mM), and nitrogen source (0.125, 0.5 and 1 g/L). The highest biomass yield (64.9 ± 0.94 mg/L/day) was obtained by using optimized medium at a salinity concentration of 30 mM (w/v), and nitrogen sources of 0.125 g/L. The maximum content of protein, lipid and carbohydrates from S. obliquus optimized medium were 342.19 ± 0.28 mg/g, 241.41 ± 4.32 mg/g and 288.05 ± 1.12 mg/g of dry wt. respectively. The amino acid and fatty acid analysis of S. obliquus biomass indicated the presence of significant amount of essential amino acids and essential fatty acids. Furthermore, chocolate crispy bar was developed by fortification with encapsulated freeze-dried S. obliquus and evaluated for its oxidative stability and sensory analysis. The chocolate fortified with microalgae can be a potential source of essential fatty acids and amino acids in addition to other bioactive compounds.

9.
Ecotoxicol Environ Saf ; 170: 644-656, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30579165

RESUMEN

Eight recently isolated microalgal species from Northern Sweden and the culture collection strain Scenedesmus obliquus RISE (UTEX 417) were tested for their ability to remove 19 pharmaceuticals from growth medium upon cultivation in short light path, flat panel photobioreactors. While the growth of one algal species, Chlorella sorokiniana B1-1, was completely inhibited by the addition of pharmaceuticals, and the one of Scenedesmus sp. B2-2 was strongly inhibited, the other algal strains grew well and produced biomass. In general, lipophilic compounds were removed highly efficient from the culture medium by the microalgae (>70% in average within 2 days). The most lipophilic compounds Biperiden, Trihexyphenidyl, Clomipramine and Amitriptyline significantly accumulated in the biomass of most algal species, with a positive correlation between accumulation and their total biomass content. More persistent in the growth medium were hydrophilic compounds like Caffeine, Fluconazole, Trimetoprim, Codeine, Carbamazepin, Oxazepam and Tramadol, which were detected in amounts of above 60% in average after algal treatment. While Coelastrella sp. 3-4 and Coelastrum astroideum RW10 were most efficient to accumulate certain compounds in their biomass, two algae species, Chlorella vulgaris 13-1 and Chlorella saccharophila RNY, were not only highly efficient in removing all 19 pharmaceuticals from the growth medium within 12 days, at the same time only small amounts of these compounds accumulated in their biomass allowing its further use. Chlorella vulgaris 13-1 was able to remove most compounds within 6 days of growth, while Chlorella saccharophila RNY needed 8-10 days."Wild" Nordic microalgae therefore are able to remove active pharmaceutical ingredients, equally or more efficient than the investigated culture collection strain, thereby demonstrating their possible use in sustainable wastewater reclamation in Nordic conditions.


Asunto(s)
Chlorella vulgaris/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Preparaciones Farmacéuticas/análisis , Scenedesmus/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biomasa , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/metabolismo , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Fotobiorreactores , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Especificidad de la Especie , Suecia , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo
10.
Ecotoxicol Environ Saf ; 142: 189-199, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28411514

RESUMEN

Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (p<0.05) lowered by CYN after 120h of exposure under limited and optimum nitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (p<0.05) inhibited the growth of M. aeruginosa. Regardless of the light or nitrogen condition, the presence of CYN increased internal H2O2 content of both species, which resulted in significant (p<0.05) changes in antioxidant enzyme (catalase, peroxidase, superoxide dismutase and glutathione S-transferase) activities. The oxidative stress caused by CYN was higher under limited light and limited nitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations.


Asunto(s)
Antioxidantes/metabolismo , Toxinas Bacterianas/toxicidad , Luz , Microcistinas/metabolismo , Microcystis/efectos de los fármacos , Nitrógeno/análisis , Scenedesmus/efectos de los fármacos , Uracilo/análogos & derivados , Contaminantes Químicos del Agua/toxicidad , Alcaloides , Catalasa/metabolismo , Toxinas de Cianobacterias , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Microcystis/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Fitoplancton/metabolismo , Scenedesmus/crecimiento & desarrollo , Scenedesmus/metabolismo , Scenedesmus/efectos de la radiación , Uracilo/toxicidad
11.
Ecotoxicol Environ Saf ; 140: 256-263, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28273625

RESUMEN

Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered.


Asunto(s)
Chlorella/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Scenedesmus/efectos de los fármacos , Zinc/toxicidad , Antioxidantes/farmacología , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Chlorella/metabolismo , Clorofila/metabolismo , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Metales Pesados/toxicidad , Oxidorreductasas/metabolismo , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Scenedesmus/metabolismo , Superóxido Dismutasa/metabolismo
12.
Plant J ; 82(3): 504-522, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25660108

RESUMEN

Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Chlamydomonas reinhardtii/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/química , Lípidos de la Membrana/metabolismo , Triglicéridos/metabolismo
13.
World J Microbiol Biotechnol ; 32(4): 55, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26925617

RESUMEN

Chlamydomonas reinhardtii is able to accumulate large amounts of triacylglycerides, the major feedstock for biodiesel production, when grown under stress conditions. In order to characterize gene transcripts induced under nitrogen, iron, and sulfur deprivation in C. reinhardtii; 583 expressed sequence tags (ESTs) were generated through a cDNA library. These sequences were subjected to contig assembly resulting in 30 contigs and 76 singletons. The comparison of the ESTs obtained with public databases allowed to assign putative functions to 66.7 % of the sequences. An important group of the identified genes are related to the lipid metabolic process. A phylogenetic analysis of these sequences identified five isoforms of diacylglycerol O-acyltransferase type 2 (DGAT-2). These genes were selected to measure their relative expression under these stress conditions by means of qRT-PCR. According to the results, the accumulation of DGTT1 mRNA increases considerably under nitrogen and iron inanition when compared to the other isoforms, which indicated that each isoform participates at different levels under each stress condition. These results can help to identify potential genes to be overexpressed by genetic engineering in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/genética , Diacilglicerol O-Acetiltransferasa/genética , Proteínas de Plantas/genética , Estrés Fisiológico , Triglicéridos/biosíntesis , Chlamydomonas reinhardtii/enzimología , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Hierro/metabolismo , Nitrógeno/metabolismo , Filogenia , ARN Mensajero/genética , ARN de Planta/genética , Azufre/metabolismo
14.
New Phytol ; 204(4): 890-900, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25103459

RESUMEN

In anaerobiosis, the microalga Chlamydomonas reinhardtii is able to produce H2 gas. Electrons mainly derive from mobilization of internal reserves or from water through biophotolysis. However, the exact mechanisms triggering this process are still unclear. Our hypothesis was that, once a proper redox state has been achieved, H2 production is eventually observed. To avoid nutrient depletion, which would result in enhanced fermentative pathways, we aimed to induce long-lasting H2 production solely through a photosynthesis : respiration equilibrium. Thus, growing cells were incubated in Tris Acetate Phosphate (TAP) medium under low light and high chlorophyll content. After a 250-h acclimation phase, a 350-h H2 production phase was observed. The light-to-H2 conversion efficiency was comparable to that given in some reports operating under sulphur starvation. Electron sources were found to be water, through biophotolysis, and proteins, particularly through photofermentation. Nonetheless, a substantial contribution from acetate could not be ruled out. In addition, photosystem II (PSII) inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) showed that it actively contributed to maintaining a redox balance during cell acclimation. In appropriate conditions, PSII may represent the major source of reducing power to feed the H2 evolution process, by inducing and maintaining an ideal excess of reducing power.


Asunto(s)
Aclimatación , Chlamydomonas reinhardtii/fisiología , Hidrógeno/metabolismo , Anaerobiosis , Hipoxia de la Célula , Respiración de la Célula , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Diurona/farmacología , Fermentación , Hidrogenasas/metabolismo , Luz , Fotólisis , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Complejo de Proteína del Fotosistema II/metabolismo
15.
Food Sci Nutr ; 12(8): 5922-5931, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139969

RESUMEN

Biochemical characterization of new microalgal strains that are isolated from diverse environmental conditions is an important starting point for the establishment of high-quality feedstock for nutraceutical and pharmaceutical applications. In this research study, the biochemical composition of three Iranian native subspecies of Scenedesmus microalgae (Scenedesmus obliquus, Scenedesmus bijugusi, and Scenedesmus sp.), with the main focus on fatty acid composition, was studied. The results showed that the strain Scenedesmus bijugusi had the highest biomass productivity (48 g/L/d), biomass (0.73%), carbohydrate (13.97%), fat (16.27%), protein (44.04%), chlorophyll-a (6.32 mg/g), and carotenoids (3.7 mg/g). The lipid profile also revealed that S. obliquus had the highest percentage of polyunsaturated fatty acid (46.52%), ratio of ∑n-3/∑n-6 (5.96), ratio of polyunsaturated fatty acid to saturated fatty acid (PUFA/SAF) (1.18), α-linolenic acid (22.74%), hypocholesterolemia index (1.61), and low atherogenic index (0.34). S. bijugusi and S. obliquus, thus, showed a great promise in nutraceutical and pharmaceutical applications due to their appropriate high productivity, biopigment, protein, lipid, antioxidant activity, long-chain polyunsaturated fatty acids, and α-linolenic acid.

16.
Sci Total Environ ; 912: 168712, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016561

RESUMEN

Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the "peroxisome" and "sulfur metabolism" pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.


Asunto(s)
Chlorella , Metales Pesados , Cadmio/análisis , Antioxidantes/metabolismo , Chlorella/metabolismo , Plomo/toxicidad , Metales Pesados/metabolismo , Plantas/metabolismo , Agua
17.
Plants (Basel) ; 13(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38256713

RESUMEN

Significant progress has been achieved in the use of biostimulants in sustainable agricultural practices. These new products can improve plant growth, nutrient uptake, crop yield and quality, stress adaptation and soil fertility, while reducing agriculture's environmental footprint. Although it is an emerging market, the biostimulant sector is very promising, hence the increasing attention of the scientific community and agro-industry stakeholders in finding new sources of plant biostimulants. Recently, pro- and eucaryotic microalgae have gained prominence and can be exploited as biostimulants due to their ability to produce high-value-added metabolites. Several works revealed the potential of microalgae- and cyanobacteria-based biostimulants (MCBs) as plant growth promoters and stress alleviators, as well as encouraging results pointing out that their use can address current and future agricultural challenges. In contrast to macroalgae biostimulants, the targeted applications of MBs in agriculture are still in their earlier stages and their commercial implementation is constrained by the lack of research and cost of production. The purpose of this paper is to provide a comprehensive overview on the use of this promising new category of plant biostimulants in agriculture and to highlight the current knowledge on their application prospects. Based on the prevailing state of the art, we aimed to roadmap MCB formulations from microalgae and cyanobacteria strain selection, algal biomass production, extraction techniques and application type to product commercialization and farmer and consumer acceptance. Moreover, we provide examples of successful trials demonstrating the beneficial applications of microalgal biostimulants as well as point out bottlenecks and constraints regarding their successful commercialization and input in sustainable agricultural practices.

18.
Bioresour Technol ; : 131572, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384046

RESUMEN

Utilizing microalgae to capture flue gas pollutants is an effective strategy for mitigating greenhouse gas emissions. However, existing carbon-fixing microalgae exhibit poor tolerance towards acidic flue gas. In this study, the Desmodesmus sp. SZ-1, which can thrive in acidic environments and efficiently sequester CO2, was isolated. Desmodesmus sp. SZ-1 exhibited strong acid tolerance ability, with an average carbon fixation rate of 497.6 mg/L/d under 10 % CO2 and pH 3.5. Physiological analysis revealed that SZ-1 responded to high CO2 by increasing chlorophyll levels while coping with acidic stress by activating antioxidant enzymes. Genome analysis revealed a large number of carbon fixation and acid adaptation genes, involved in membrane lipid biosynthesis, H+ pumps, molecular chaperones, peroxidase system, amino acid synthesis, and carbonic anhydrase. This study provides a novel algal resource for mitigating acid gas emissions and a comprehensive genetic database for genetically modifying microalgae.

19.
Heliyon ; 10(16): e36366, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253166

RESUMEN

The escalating contamination caused by lead ions (Pb2⁺) and its harmful effects on all life forms has raised global concerns. Certain microalgae thrive in metal mining sites characterized by low pH and high concentrations of Pb2⁺, which are usually prohibitive for many microorganisms. Little is known about the mechanisms underlying the adaptation of such microalgae to these hostile conditions. In this study, we elucidated the adaptive strategies of the green microalga Micractinium belenophorum strain AUMW, isolated from a lead mining site, and its application for the removal of Pb+2. Results revealed that strain AUMW can efficiently tolerate up to 200 ppm of Pb+2 in an F/2 medium. Further experimental variables were optimized through response surface methodology (RSM), and 99.6 % removal of Pb2⁺ was achieved. Novel adaptive responses of strain AUMW to high levels of Pb2⁺ include: (i) activation of metal-protective response by modulation of quantum yield (F v /F m ) and non-photochemical quenching (NPQ) of photosystem II; (ii) extracellular silicification encapsulated cells of strain AUMW and altered cell morphology from oval to hexagonal; (iii) silicification prevented intracellular translocation of Pb+2; (iv) silicification boosted adsorption of Pb+2, thus enhanced its removal. This study offers new insights into the protective role of silicification in green microalgae and its potential for the removal of metals from metal-polluted sites, waste from energy storage battery industries, and spent batteries. It also provides a solid base to explore the genetic and metabolic pathways involved in the adaptation of strain AUMW to elevated levels of Pb+2.

20.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372038

RESUMEN

Recently, green microalgae have gained importance due to their nutritional and bioactive compounds, which makes them some of the most promising and innovative functional foods. The aim of this study was to evaluate the chemical profile and the in vitro antioxidant, antimicrobial and antimutagenic activity of an aqueous extract of the green microalga Ettlia pseudoalveolaris, obtained from the freshwater lakes of the Ecuadorian Highlands. Human microvascular endothelial cells (HMEC-1) were used to determine the ability of the microalga to reduce the endothelial damage caused by hydrogen peroxide-induced oxidative stress. Furthermore, the eukaryotic system Saccharomyces cerevisiae was used to evaluate the possible cytotoxic, mutagenic and antimutagenic effect of E. pseudoalveolaris. The extract showed a notable antioxidant capacity and a moderate antibacterial activity mostly due to the high content in polyphenolic compounds. It is likely that the antioxidant compounds present in the extract were also responsible for the observed reduction in endothelial damage of HMEC-1 cells. An antimutagenic effect through a direct antioxidant mechanism was also found. Based on the results of in vitro assays, E. pseudoalveolaris proved to be a good source of bioactive compounds and antioxidant, antibacterial and antimutagenic capacities making it a potential functional food.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA