Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(1): e0119223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174932

RESUMEN

Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.


Asunto(s)
Interacciones Huésped-Patógeno , Gripe Humana , Proteínas Quinasas , Transducción de Señal , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Replicación Viral , Proteínas Quinasas/metabolismo , Fosforilación
2.
Pharmaceutics ; 16(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399219

RESUMEN

The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors.

3.
Cell Chem Biol ; 28(12): 1679-1692.e4, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34216546

RESUMEN

Kinase inhibitors are promising drugs to stabilize the endothelial barrier following inflammatory damage. However, our limited knowledge of how kinase signaling activates barrier-restorative pathways and the complexity of multi-target drugs have hindered drug discovery and repurposing efforts. Here, we apply a kinase regression approach that exploits drug polypharmacology to investigate endothelial barrier regulation. A screen of 28 kinase inhibitors identified multiple inhibitors that promote endothelial barrier integrity and revealed divergent barrier phenotypes for BCR-ABL drugs. Target deconvolution predicted 50 barrier-regulating kinases from diverse kinase families. Using gene knockdowns, we identified kinases with a role in endothelial barrier regulation and dissected different mechanisms of action of barrier-protective kinase inhibitors. These results demonstrate the importance of polypharmacology in the endothelial barrier phenotype of kinase inhibitors and provide promising new leads for barrier-strengthening therapies.


Asunto(s)
Compuestos de Anilina/farmacología , Carbazoles/farmacología , Alcaloides Indólicos/farmacología , Nitrilos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Compuestos de Anilina/química , Carbazoles/química , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Alcaloides Indólicos/química , Nitrilos/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Polifarmacología , Inhibidores de Proteínas Quinasas/química , Quinolinas/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA