Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Anat ; 238(1): 113-130, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32951205

RESUMEN

In this paper, we develop and validate an osteometry-based mechanistic approach to calculation of available range of motion (aROM) in presacral intervertebral joints in sagittal bending (SB), lateral bending (LB), and axial rotation (AR). Our basic assumption was the existence of a mechanistic interrelation between the geometry of zygapophysial articular facets and aROM. Trigonometric formulae are developed for aROM calculation, of which the general principle is that the angle of rotation is given by the ratio of the arc length of motion to the radius of this arc. We tested a number of alternative formulae against available in vitro data to identify the most suitable geometric ratios and coefficients for accurate calculation. aROM values calculated with the developed formulae show significant correlation with in vitro data in SB, LB, and AR (Pearson r = 0.900) in the reference mammals (man, sheep, pig, cow). It was found that separate formulae for different zygapophysial facet types (radial (Rf), tangential (Tf), radial with a lock (RfL)) give significantly greater accuracy in aROM calculation than the formulae for the presacral spine as a whole and greater accuracy than the separate formulae for different spine regions (cervical, thoracic, lumbar). The advantage of the facet-specific formulae over the region-specific ones shows that the facet type is a more reliable indicator of the spine mobility than the presence or absence of ribs. The greatest gain in calculation accuracy with the facet-specific formulae is characteristic in AR aROM. The most important theoretical outcome is that the evolutionary differentiation of the zygapophysial facets in mammals, that is the emergence of Tf joints in the rib cage area of the spine, was more likely associated with the development of AR rather than with SB mobility and, hence, with cornering rather than with forward galloping. The AR aROM can be calculated with the formulae common for man, sheep, pig, and cow. However, the SB aROM of the human spine is best calculated with different coefficient values in the formulae than those for studied artiodactyls. The most suitable coefficient values indicate that the zygapophysial articular facets tend to slide past each other to a greater extent in the human thoracolumbar spine rather than in artiodactyls. Due to this, artiodactyls retain relatively greater facet overlap in extremely flexed and extremely extended spine positions, which may be more crucial for their quadrupedal gallop than for human bipedal locomotion. The SB, LB, and AR aROMs are quite separate in respect of the formulae structure in the cervical region (radial facet type). However, throughout the thoracolumbar spine (tangential and radial with lock facets), the formulae for LB and AR are basically similar differing in coefficient values only. This means that, in the thoracolumbar spine, the greater the LB aROM, the greater the AR aROM, and vice versa. The approach developed promises a wide osteological screening of extant and extinct mammals to study the sex, age, geographical variations, and disorders.


Asunto(s)
Disco Intervertebral/fisiología , Rango del Movimiento Articular/fisiología , Columna Vertebral/fisiología , Articulación Cigapofisaria/fisiología , Animales , Bovinos , Humanos , Rotación , Ovinos , Porcinos , Soporte de Peso/fisiología
2.
J Med Syst ; 43(8): 275, 2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31280416

RESUMEN

To solve the problem of location and segmentation of intervertebral discs in spinal MRI images, a method of intervertebral disc segmentation and degeneration classification diagnosis based on wavelet image denoising and independent component analysis-active appearance model (ICA-AAM) was proposed. Firstly, the spinal MRI image is decomposed by wavelet transform, and the noise is filtered by soft threshold method. Then, aiming at the inadequacy of PCA method in AAM in describing data details, ICA is used instead of PCA to model shape and texture models, and an improved AAM segmentation model is formed. Finally, the intervertebral discs in MRI images are segmented by AAM model, and the degeneration classification of intervertebral discs is diagnosed according to the gray level characteristics of the segmented region. The experimental results show that the method can accurately locate and segment the intervertebral disc region and make classification diagnosis.


Asunto(s)
Disco Intervertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Análisis de Ondículas , Algoritmos , Humanos , Modelos Estadísticos , Traumatismos Vertebrales/diagnóstico por imagen
3.
Biomimetics (Basel) ; 9(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39329534

RESUMEN

The humanoid torso is crucial for the overall performance of a humanoid robot. Developing an effective humanoid spine is essential for enhancing this mechanism. This paper introduces a one-vertebral-disc unit inspired by human spine anatomy. A prototype was created using 3D-printed parts and commercially available components. Two general human-like motions are achieved using two servo motors and two pulleys, reducing the number of servo motors needed. The results indicate that a one-vertebral-disc unit can bend up to 15 degrees. The proposed mechanism functions effectively and successfully mimics human movements. It holds potential for integration into humanoid torsos, enabling efficient performance in human-like tasks in the future.

4.
Hum Mov Sci ; 88: 103054, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36621141

RESUMEN

Spinal dynamics during gait have been of interest in research for many decades. Based on respective previous investigations, the pelvis is generally expected to be maximally forward rotated on the side of the reference leg at the beginning of each gait cycle and to reach its maximum counterrotation approximately at the end of the reference leg's stance phase. The pelvic-upper-thoracic-spine coordination converges towards an anti-phase movement pattern in high velocities during ambulation. The vertebral bodies around the seventh thoracic vertebra are considered to be an area of transition during human ambulation where no or at least little rotary motion can be observed. The respective cranial and caudal vertebrae meanwhile are expected to rotate conversely around this spinal point of intersection. However, these previous assumptions are based on scarce existing research, whereby only isolated vertebrae have been analyzed contemporaneously. Due to huge methodological differences in data capturing approaches, the results are additionally hardly comparable to each other and involved measurement procedures are often not implementable in clinical routines. Furthermore, none of the above-mentioned methods provided reference data for spinal motion during gait based on an appropriate number of healthy participants. Hence, the aim of this study was to present such reference data for spinal rotary motion of every vertebral body from C7 down to L4 and the pelvis derived from surface topographic back shape analyses in a cohort of 201 healthy participants walking on a treadmill at a given walking speed of 5 km/h. Additionally, the spine's functional movement behavior during gait should be described in the transverse plane based on data derived from this noninvasive, clinically suitable measurement approach and, in conclusion, the results shall be compared against those of previous research findings derived from other measurement techniques. Contrary to the previous functional understanding, the area of the mid-thoracic spine was found to demonstrate the largest amplitude of rotary motion of all investigated vertebrae and revealed an approximately counterrotated movement behavior compared to the rotary motion of the pelvis. In both directions, spinal rotation during gait seemed to be initiated by the pelvis. The overlying vertebrae followed in succession in the sense of an ongoing movement. Therefore, the point of intersection was not statically located in a specific anatomical section of the spine. Instead, it was found to be dynamic, ascending from one vertebra to the next from caudal to cranial in dependence of the pelvis's rotation initiation.


Asunto(s)
Marcha , Caminata , Humanos , Valores de Referencia , Vértebras Torácicas , Pelvis , Rotación , Fenómenos Biomecánicos
5.
Hum Mov Sci ; 87: 103036, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36395570

RESUMEN

Vertebral motion reveals complex patterns, which are not yet understood in detail. This applies to vertebral kinematics in general but also to specific motion tasks like gait. For gait analysis, most of existing publications focus on averaging characteristics of recorded motion signals. Instead, this paper aims at analyzing intra- and inter-individual variation specifically and elaborating motion parameters, which are consistent during gait cycles of particular persons. For this purpose, a study design was utilized, which collected motion data from 11 asymptomatic test persons walking at different speed levels (2, 3, and 4 km/h). Acquisition of data was performed using surface topography. The motion signals were preprocessed in order to separate average vertebral orientations (neutral profiles) from basic gait cycles. Subsequently, a k-means clustering technique was applied to figure out, whether a discrimination of test persons was possible based on the preprocessed motion signals. The paper shows that each test sequence could be assigned to the particular test person without additional prior information. In particular, the neutral profiles appeared to be highly consistent intra-individually (across the gait cycles as well as speed levels), but substantially different between test persons. A full discrimination of test persons was achieved using the neutral profiles with respect to flexion/extension data. Based on this, these signals can be considered as individual characteristics for the particular test persons.


Asunto(s)
Marcha , Columna Vertebral , Humanos , Caminata , Movimiento (Física) , Análisis de la Marcha , Fenómenos Biomecánicos , Rango del Movimiento Articular
6.
Data Brief ; 48: 109178, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383806

RESUMEN

Spinal function is substantially related to the motion of the particular vertebrae and the spine as a whole. For systematic assessment of individual motion, data sets are required which cover the kinematics comprehensively. Additionally, the data should enable a comparison of inter- and intraindividual variation of vertebral orientation in dedicated motion tasks like gait. For this purpose, this article provides surface topography (ST) data which were acquired while the individual test persons were walking on a treadmill at three different speed levels (2 km/h, 3 km/h, 4 km/h). In each recording, ten full walking cycles were included per test case to enable a detailed analysis of motion patterns. The provided data reflects asymptomatic and pain-free volunteers. Each data set contains the vertebral orientation in all three motion directions for the vertebra prominens down to L4 as well as the pelvis. Additionally, spinal parameters like balance, slope, and lordosis / kyphosis parameters as well as an assignment of the motion data to single gait cycles are included. The complete raw data set without any preprocessing is provided. This allows to apply a broad range of further signal processing and evaluation steps in order to identify characteristic motion patterns as well as intra- and inter-individual variation of vertebral motion.

7.
Hum Mov Sci ; 81: 102919, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34979480

RESUMEN

Analysis of spinal motion is considered to be important to assess function of the human spine. Surface topography (ST) is a method to record the vertebral orientation in 3D. Such measurements can be performed in static but also in dynamic situations like gait or other motion tasks. However, dynamic ST measurements are hard to interpret due to their complexity. The main goal of this paper is to provide comprehensive visualization tools which allow a more intuitive and comprehensive interpretation n of such measurements. In particular, juxtaposition and superimposition techniques are utilized to emphasize differences in motion characteristics. The method was applied to a test series of 12 healthy volunteers walking on a treadmill at various speed levels. It could be shown that the visualization tools are helpful to compare different motion sequences including an analysis of intra- and interindividual variation. Based on these techniques, it could be shown that the profiles of vertebral orientation remain considerable constant when one person was walking at different speed levels whereas they differed substantially between the different individuals. In contrast, the motion amplitudes contained high intra- and interindividual variation, i.e. between speed levels and different test persons. In summary, the paper demonstrates that appropriate visualization tools are helpful to interpret ST measurements and cope with the complexity of these data sets. In particular, they can be used to compare different motion sequences in a more comprehensive way.


Asunto(s)
Marcha , Columna Vertebral , Fenómenos Biomecánicos , Prueba de Esfuerzo , Humanos , Movimiento (Física) , Caminata
8.
Comput Biol Med ; 135: 104629, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34274895

RESUMEN

The determinant role of the annulus fibrosus interlamellar zones in the intervertebral disc transversal and volumetric responses and hence on their corresponding three-dimensional conducts have been only revealed and appreciated recently. Their consideration in disc modeling strategies has been proven to be essential for the reproduction of correct local strain and displacement fields inside the disc especially in the unconstrained directions of the disc. In addition, these zones are known to be the starting areas of annulus fibrosus circumferential tears and disc delamination failure mode, which is often judged as one of the most dangerous disc failure modes that could evolve with time leading to disc hernia. For this latter reason, the main goal of the current contribution is to incorporate physically for the first time, the interlamellar zones, at the scale of a complete human lumbar intervertebral disc, in order to allow a correct local vision and replication of the different lamellar-interlamellar interactions and an identification of the interlamellar critical zones. By means of a fully tridimensional chemo-viscoelastic constitutive model, which we implemented into a finite element code, the physical, mechanical and chemical contribution of the interlamellar zones is added to the disc. The chemical-induced volumetric response is accounted by the model for both the interlamellar zones and the lamellae using experimentally-based fluid kinetics. Computational simulations are performed and critically discussed upon different simple and complex physiological movements. The disc core and the interlamellar zones are numerically accessed, allowing the observation of the displacement and shear strain fields that are compared to direct MRI experiments from the literature. Important conclusions about the correct lamellar-interlamellar-nucleus interactions are provided thanks to the developed model. The critical interlamellar spots with the highest delamination potentials are defined, analyzed and related to the local kinetics and microstructure.


Asunto(s)
Anillo Fibroso , Disco Intervertebral , Anillo Fibroso/diagnóstico por imagen , Humanos , Disco Intervertebral/diagnóstico por imagen , Cinética , Modelos Biológicos , Estrés Mecánico
9.
Acad Radiol ; 28(6): e172-e181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32620526

RESUMEN

RATIONALE AND OBJECTIVES: Crucial to the process of three-dimensional (3D) printing is the knowledge of how the actual structure or organ relates dimensionally to its corresponding medical image. This study will examine the differences between human lumbar vertebrae, 3D scans of these bones, 3D models based on computed tomographic (CT) scans, and 3D-printed models. MATERIALS AND METHODS: CT scans were obtained for six human lumbar spines. The bones were cleaned, and 3D scanned. 3D mesh models were created from the CT data, and then 3D printed. Four models were analyzed: anatomic bones, 3D-scanned models, CT-models, and 3D-printed models. Manual measurements were performed for all model types, and segmentation metric comparisons were performed comparing the 3D-scanned models to the CT-models. RESULTS: There was no statistical difference between manual measurements when comparing each parameter of all model types, except for vertebral width (p = 0.044). There was no statistical difference when comparing the average of all measurements between all model types (p = 0.247). The mean Hausdorff distance was 0.99 mm (SD 0.55 mm) when comparing 3D-scanned model to CT-model. The mean Dice coefficient was 0.90 (SD 0.07) when comparing 3D-scanned model to CT-model. The mean volume for 3D-scanned model and CT-model were 41.6 ml and 45.9 ml (p < 0.001), respectively. CONCLUSION: This study clarifies the geometric and volumetric relationship between human lumbar vertebra and CT-based vertebral models. Segmentation metrics reveal a 1 mm difference between examined bones (using the 3D-scanned bone as a surrogate), and the CT measurements. This is confirmed by a volumetric difference of 4.3 ml, between the larger CT-based model and the smaller bone.


Asunto(s)
Vértebras Lumbares , Tomografía Computarizada por Rayos X , Humanos , Imagenología Tridimensional , Vértebras Lumbares/diagnóstico por imagen , Modelos Anatómicos , Prótesis e Implantes
10.
Biomed Mater Eng ; 32(5): 267-279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33998527

RESUMEN

BACKGROUND: Several finite element (FE) models have been developed to study the effects of vibration on human lumbar spine. However, the authors know of no published results so far that have proposed computed tomography-based FE models of whole lumbar spine including the pelvis to conduct dynamic analysis. OBJECTIVE: To create and validate a three-dimensional ligamentous FE model of the human lower thorax to pelvis spinal segment (T12-Pelvis) and provide a detailed simulation environment to investigate the dynamic characteristics of the lumbar spine under whole body vibration (WBV). METHODS: The T12-Pelvis model was generated based on volume reconstruction from computed tomography scans and validated against the published experimental data. FE modal analysis was implemented to predict dynamic characteristics associated with the first-order vertical resonant frequency and vibration mode of the model with upper body mass of 40 kg under WBV. RESULTS: It was found that the current FE model was validated and corresponded closely with the published data. The obtained results from the modal analysis indicated that the first-order vertical resonant frequency of the T12-Pelvis model was 6.702 Hz, and the lumbar spine mainly performed vertical motion with a small anteroposterior motion. It was also found that shifting the upper body mass centroid onwards or rearwards from the normal upright sitting posture reduced the vertical resonant frequency. CONCLUSIONS: These findings may be helpful to better understand vibration response of the human spine, and provide important information to minimize injury and discomfort for these WBV-exposed occupational groups.


Asunto(s)
Vértebras Lumbares , Modelos Biológicos , Análisis de Elementos Finitos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Pelvis/diagnóstico por imagen , Tórax/diagnóstico por imagen
11.
World Neurosurg ; 149: e821-e827, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33540103

RESUMEN

OBJECTIVE: To determine if 2-in-1 patient-specific laminectomy and drill guides can be safely used to perform laminectomy and pedicle screw insertion. METHODS: This was a cadaveric study designed to test novel 2-in-1 patient-specific laminectomy guides, with modular removable pedicle screw drill guides. Three-dimensional (3D) printing has not been applied to laminectomy. This cadaveric study tests novel 2-in-1 patient-specific laminectomy guides, with modular removable pedicle screw drill guides. Computed tomography (CT) scans of 3 lumbar spines were imported into 3D Slicer. Spinal models and patient-specific guides were created and 3D printed. The bones were cleaned to visualize and record the under surface of the lamina during laminectomy. Pedicle screws and laminectomies were performed with the aid of patient-specific guides. CT scans were performed to compare planned and actual screw and laminectomy positions. RESULTS: Thirty screws were inserted in 15 lumbar vertebrae by using the integrated 2-in-1 patient-specific drill guides. There were no cortical breaches on direct examination, or on postoperative CT. Digital video analysis revealed the burr tip did not pass deep to the inner table margin of the lamina in any of the 30 laminectomy cuts. Average surgical time was 4 minutes and 46 seconds (standard deviation, 1 min 38 sec). CONCLUSIONS: This study has explored the development of novel 2-in-1 patient-specific, 3D-printed laminectomy guides with integrated pedicle screw drill guides, which are accurate and safe in the laboratory setting. These instruments have the potential to simplify complex surgical steps, and improve accuracy, time, and cost.


Asunto(s)
Laminectomía , Vértebras Lumbares/cirugía , Tornillos Pediculares , Impresión Tridimensional , Cadáver , Humanos , Laminectomía/métodos , Modelos Anatómicos , Fusión Vertebral/métodos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-29755234

RESUMEN

PURPOSE: The relevance of the problem is caused by an increase in the number of spine-related diseases among children, including scoliosis. Currently, there are no methodologies for the treatment of scoliosis, which ensure an unambiguous positive result. The purpose of the article is to justify the spinal model as an elastic viscoplastic body for further mathematical modeling of the process of spine correction and search for its optimal conditions. METHODOLOGY: The leading approach to the study of this problem is the development of techniques for the surgical treatment of deformities of the vertebral column with the aid of an external fixation device for the spine, providing for a rigid connection of the elements of the apparatus with each other and with the spine. The rigid connection between the elements of the external fixation device increases the degree of static indeterminacy of the design, which leads to the occurrence of additional dangerous stresses in the details of the apparatus and in the vertebrae. The control actions in such devices do not provide an adequate result for the process of correction of the vertebral column. RESULTS: The main result is the substantiation of the spine model as an elastic viscoplastic body. This will allow more detailed consideration of the medical and biological features of the spine and the physical and mechanical properties of human bone and soft tissues. The proposed model will allow developing an adaptive design of the device, taking into account specific features of the organism and more effectively managing the correction process. VALUE: The materials of the article can be useful for scientists, doctors and specialists in conducting scientific research on the problem of spine deformation correction and the development of appropriate technical means.

13.
J Orthop Res ; 34(10): 1808-1819, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26748564

RESUMEN

To investigate the effects of a clinical lytic defect on the structural response of human thoracolumbar functional spinal unit. A novel CT-compatible mechanical test system was used to image the deformation of a T12-L1 motion segment and measure the change in strain response under compressive loads ranging from 50 to 750 N. A lytic lesion (LM) with cortex involvement (33% by volume) was introduced to the upper vertebral body and the CT experiments were repeated. Finite element models, established from the CT volumes, were used to investigate the defect's effects on the structural response and the state of principal and shear stresses within the affected and adjacent vertebrae. The lytic lesion resulted in severe loss of the vertebral structural competence, resulting in significant, non-linear, and asymmetric increase in the experimentally measured strains and computed stresses within both vertebrae (p < 0.01). At the cortex, the tensile strains were significantly increased, while compressive strains significantly decreased, (p < 0.05). Both the vertebral bone and cortex regions adjacent to the defect showed significant increase in computed compressive, tensile, and shear stresses (p < 0.01). Changes in stress and strain distribution within the affected and adjacent vertebral bone and the experimentally observed bulging and buckling of the vertebral cortices suggested that initiation of catastrophic vertebral failure may occur under load magnitudes encountered in daily living. Although the effect of LM on the global deformation of the spine was well-predicted, our results show that FE predictions of local strain changes must be carefully assessed for clinical relevance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1808-1819, 2016.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares/fisiopatología , Osteólisis/fisiopatología , Neoplasias de la Columna Vertebral/fisiopatología , Vértebras Torácicas/fisiopatología , Anciano , Fuerza Compresiva , Humanos , Osteólisis/etiología , Neoplasias de la Columna Vertebral/complicaciones , Soporte de Peso
14.
Spine J ; 16(8): 989-1000, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27125197

RESUMEN

BACKGROUND CONTEXT: Degenerative disc disease (DDD) is the most common disease of aging in humans. DDD is characterized by the gradual damage of the intervertebral discs. The disease is characterized by progressive dehydration of nucleus pulposus and disruption of annulus fibrosus of intervertebral disc. PURPOSE: Even though it is highly prevalent, there is no effective therapy to regenerate the degenerated disc, or decrease or halt the disease progression. Therefore, novel monitoring and diagnostic tests are essential to develop an alternative therapeutic strategies which can prevent further progression of disc degeneration. STUDY DESIGN: The study was designed to understand the proteome map of annulus fibrosus and nucleus pulposus tissues of intervertebral disc and its differential expression in patients with DDD. METHODS: The proteome map of the annulus fibrosus and nucleus pulposus tissues of intervertebral disc was cataloged involving one-dimensional gel electrophoresis-Fourier transform mass spectrometry/ion trap tandem mass spectrometry (FTMS/ITMSMS) analysis. The altered proteome patterns of annulus fibrosus and nucleus pulposus tissues for DDD were identified using Isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomics coupled with FTMS/ITMSMS and network pathway analysis. RESULTS: The study identified a total of 759 and 692 proteins from the annulus fibrosus and the nucleus pulposus tissues of the disc based on FTMS/ITMSMS analysis, which includes 118 proteins commonly identified between the two tissues. Vibrant changes were observed between the normal and the degenerating annulus fibrosus and nucleus pulposus tissues. A total of 73 and 54 proteins were identified as differentially regulated in the annulus and the nucleus tissues, respectively, between the normal and the degenerated tissues independently. Network pathway analysis mapped the differentially expressed proteins to cell adhesion, cell migration, and interleukin13 signaling pathways. CONCLUSIONS: Altogether, the current study provides a novel vision in the biomechanism of human disc degeneration and a certain number of proteins with the potential biomarker value for the preliminary diagnosis and scenario of DDD.


Asunto(s)
Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Proteoma/metabolismo , Estudios de Casos y Controles , Humanos , Proteoma/química
15.
Ultrasound Med Biol ; 41(7): 2049-56, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25864018

RESUMEN

The aim of this study was to develop a new method for quantifying intersegmental motion of the spine in an instrumented motion segment L4-L5 model using ultrasound image post-processing combined with an electromagnetic device. A prospective test-retest design was employed, combined with an evaluation of stability and within- and between-day intra-tester reliability during forward bending by 15 healthy male patients. The accuracy of the measurement system using the model was calculated to be ± 0.9° (standard deviation = 0.43) over a 40° range and ± 0.4 cm (standard deviation = 0.28) over 1.5 cm. The mean composite range of forward bending was 15.5 ± 2.04° during a single trial (standard error of the mean = 0.54, coefficient of variation = 4.18). Reliability (intra-class correlation coefficient = 2.1) was found to be excellent for both within-day measures (0.995-0.999) and between-day measures (0.996-0.999). Further work is necessary to explore the use of this approach in the evaluation of biomechanics, clinical assessments and interventions.


Asunto(s)
Artrometría Articular/instrumentación , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiología , Imanes , Ultrasonografía/instrumentación , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
16.
J Biomech ; 47(1): 297-301, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24210477

RESUMEN

Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on lost working time and associated costs. By means of this motivation, this work aims to evaluate a biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD). Recent studies have emphasized the importance of an accurate biomechanical modeling of the IVD, as it is a highly complex multiphasic medium. Poroelastic models of the disc are mostly implemented in commercial finite element packages with limited access to the algorithms. Therefore, a novel poroelastic formulation implemented on a home-developed open source FE solver is briefly addressed throughout this paper. The combination of this formulation with biphasic osmotic swelling behavior is also taken into account. Numerical simulations were devoted to the analysis of the non-degenerated human lumbar IVD time-dependent behavior. The results of the tests performed for creep assessment were inside the scope of the experimental data, with a remarkable improvement of the numerical accuracy when compared with previously published results obtained with ABAQUS(®). In brief, this in-development open-source FE solver was validated with literature experimental data and aims to be a valuable tool to study the IVD biomechanics and DDD mechanisms.


Asunto(s)
Degeneración del Disco Intervertebral/fisiopatología , Disco Intervertebral/fisiología , Algoritmos , Fenómenos Biomecánicos , Elasticidad , Análisis de Elementos Finitos , Humanos , Modelos Teóricos , Ósmosis , Porosidad , Presión , Estrés Mecánico
17.
Journal of Medical Biomechanics ; (6): E454-E459, 2011.
Artículo en Zh | WPRIM | ID: wpr-804144

RESUMEN

Objective To develop a set of loading device that can simulate the spinal movement in vitro so as to carry out the biomechanical experiment on human spine. Methods Based on the principle of bearing, the rotary locking device was designed and fixed on the loading plate, which was rotated to the position for testing and then locked by the bolt before loading. And then, with the auto-loading power provided by the universal testing machine, the pure moment of flexion/extension, left/right bending and left/right axial rotation were applied on the spine specimen to simulate the spinal movement in vivo. Finally, the position of the spine specimen before/after loading was measured by the 3D scanner. With the loading device, the range of motion under these six loading conditions for six fresh (one-year age) porcine cervical spines (C2-C6) was tested, and precision of the loading device as well as error analysis were testified by experiments. Results A set of experimental device for the three-dimensional movement measuring for human spine was developed. Data of neutral zone and range of motion for the porcine cervical spine in six directions were acquired with the total measurement error being less than 3.5%. Conclusions The delicate design of this loading device could simulate the spinal motion in vitro and thus achieve the rapid loading of the human spine. This is an inexpensive, simple and practical device, which can significantly increase the test efficiency and has great application value in loading on the spine in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA