Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 168(1-2): 311-324.e18, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086095

RESUMEN

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Conducta Predatoria , Animales , Ansiedad/metabolismo , Núcleo Amigdalino Central/anatomía & histología , Electromiografía , Interneuronas/metabolismo , Mandíbula/anatomía & histología , Mandíbula/inervación , Mandíbula/fisiología , Ratones , Cuello/anatomía & histología , Cuello/inervación , Cuello/fisiología , Neuronas/citología , Neuronas/fisiología , Sustancia Gris Periacueductal/fisiología
2.
Proc Natl Acad Sci U S A ; 121(15): e2320484121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557183

RESUMEN

Ethnographic records show that wooden tools played a pivotal role in the daily lives of hunter-gatherers including food procurement tools used in hunting (e.g., spears, throwing sticks) and gathering (e.g. digging sticks, bark peelers), as well as, domestic tools (e.g., handles, vessels). However, wood rarely survives in the archeological record, especially in Pleistocene contexts and knowledge of prehistoric hunter-gatherer lifeways is strongly biased by the survivorship of more resilient materials such as lithics and bones. Consequently, very few Paleolithic sites have produced wooden artifacts and among them, the site of Schöningen stands out due to its number and variety of wooden tools. The recovery of complete wooden spears and throwing sticks at this 300,000-y-old site (MIS 9) led to a paradigm shift in the hunter vs. scavenger debate. For the first time and almost 30 y after their discovery, this study introduces the complete wooden assemblage from Schöningen 13 II-4 known as the Spear Horizon. In total, 187 wooden artifacts could be identified from the Spear Horizon demonstrating a broad spectrum of wood-working techniques, including the splitting technique. A minimum of 20 hunting weapons is now recognized and two newly identified artifact types comprise 35 tools made on split woods, which were likely used in domestic activities. Schöningen 13 II-4 represents the largest Pleistocene wooden artifact assemblage worldwide and demonstrates the key role woodworking had in human evolution. Finally, our results considerably change the interpretation of the Pleistocene lakeshore site of Schöningen.


Asunto(s)
Artefactos , Armas , Humanos , Huesos , Arqueología , Madera
3.
Proc Natl Acad Sci U S A ; 121(34): e2405993121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136992

RESUMEN

Beluga whales play a critical role in the subsistence economies and cultural heritage of Indigenous communities across the Arctic, yet the effects of Indigenous hunting on beluga whales remain unknown. Here, we integrate paleogenomics, genetic simulations, and stable δ13C and δ15N isotope analysis to investigate 700 y of beluga subsistence hunting in the Mackenzie Delta area of northwestern Canada. Genetic identification of the zooarchaeological remains, which is based on radiocarbon dating, span three time periods (1290 to 1440 CE; 1450 to 1650 CE; 1800 to 1870 CE), indicates shifts across time in the sex ratio of the harvested belugas. The equal number of females and males harvested in 1450 to 1650 CE versus more males harvested in the two other time periods may reflect changes in hunting practices or temporal shifts in beluga availability. We find temporal shifts and sex-based differences in δ13C of the harvested belugas across time, suggesting historical adaptability in the foraging ecology of the whales. We uncovered distinct mitochondrial diversity unique to the Mackenzie Delta belugas, but found no changes in nuclear genomic diversity nor any substructuring across time. Our findings indicate the genomic stability and continuity of the Mackenzie Delta beluga population across the 700 y surveyed, indicating the impact of Inuvialuit subsistence harvests on the genetic diversity of contemporary beluga individuals has been negligible.


Asunto(s)
Ballena Beluga , Animales , Ballena Beluga/genética , Territorios del Noroeste , Femenino , Masculino , Caza , Isótopos de Nitrógeno/análisis , Isótopos de Carbono/análisis , ADN Mitocondrial/genética , Inuk
4.
Clin Infect Dis ; 78(3): 637-645, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38207126

RESUMEN

BACKGROUND: A unique enzootic focus of Mycobacterium bovis in free-ranging deer was identified in northern lower Michigan in 1994, with subsequent evidence of transmission to local cattle herds. Between 2002 and 2017, 3 Michigan deer hunters with M. bovis disease were previously reported. We present 4 additional human cases linked to the zoonotic focus in deer, utilizing genomic epidemiology to confirm close molecular associations among human, deer and cattle M. bovis isolates. METHODS: Identification of human tuberculosis (TB) cases with cultures of M. bovis was provided from the Michigan Department of Health and Human Services (MDHHS) tuberculosis database. Clinical review and interviews focused on risk factors for contact with wildlife and cattle. Whole genome sequences of human isolates were compared with a veterinary library of M. bovis strains to identify those linked to the enzootic focus. RESULTS: Three confirmed and 1 probable human case with M. bovis disease were identified between 2019 and 2022, including cutaneous disease, 2 severe pulmonary disease cases, and human-to-human transmission. The 3 human isolates had 0-3 single-nucleotide polymorphisms (SNPs) with M. bovis strains circulating in wild deer and domestic cattle in Michigan. CONCLUSIONS: Spillover of enzootic M. bovis from deer to humans and cattle continues to occur in Michigan. Future studies should examine the routes of transmission and degree of risk to humans through expanded epidemiological surveys. A One Health approach linking human, veterinary and environmental health should address screening for TB infection, public education, and mitigation of transmission.


Asunto(s)
Ciervos , Mycobacterium bovis , Tuberculosis , Animales , Humanos , Bovinos , Mycobacterium bovis/genética , Michigan/epidemiología , Ciervos/microbiología , Tuberculosis/epidemiología , Tuberculosis/veterinaria , Tuberculosis/prevención & control , Animales Salvajes
5.
J Neurophysiol ; 132(4): 1223-1230, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39292872

RESUMEN

The ability to perform intricate movements is crucial for human motor function. The neural mechanisms underlying precision and power grips are incompletely understood. Corticospinal output from M1 is thought to be modulated by GABAA-ergic intracortical networks within M1. The objective of our study was to investigate the contribution of M1 intracortical inhibition to fine motor control using adaptive threshold hunting (ATH) with paired-pulse TMS during pinch and grasp. We hypothesized that short-interval intracortical inhibition (SICI) could be assessed during voluntary activation and that corticomotor excitability and SICI modulation would be greater during pinch than grasp, reflecting corticospinal control. Seventeen healthy participants performed gradual pinch and grasp tasks. Using ATH, paired-pulse TMS was applied in the anterior-posterior current direction to measure MEP latencies, corticomotor excitability, and SICI. MEP latencies indicated that the procedure preferentially targeted late I-waves. In terms of corticomotor excitability, there was no difference in the TMS intensity required to reach the MEP target during pinch and grasp. Greater inhibition was found during pinch than during grasp. ATH with paired-pulse TMS permits investigation of intracortical inhibitory networks and their modulation during the performance of dexterous motor tasks revealing a greater modulation of GABAA-ergic inhibition contributing to SICI during pinch compared with grasp. NEW & NOTEWORTHY Primary motor cortex intracortical inhibition was investigated during dexterous manual task performance using adaptive threshold hunting. Motor cortex intracortical inhibition was uniquely modulated during pinching versus grasping tasks.


Asunto(s)
Potenciales Evocados Motores , Fuerza de la Mano , Corteza Motora , Inhibición Neural , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Masculino , Femenino , Adulto , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología , Fuerza de la Mano/fisiología , Adulto Joven , Destreza Motora/fisiología , Desempeño Psicomotor/fisiología
7.
J Anat ; 244(2): 205-231, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37837214

RESUMEN

Carnivorans are well-known for their exceptional backbone mobility, which enables them to excel in fast running and long jumping, leading to them being among the most successful predators amongst terrestrial mammals. This study presents the first large-scale analysis of mobility throughout the presacral region of the vertebral column in carnivorans. The study covers representatives of 6 families, 24 genera and 34 species. We utilized a previously developed osteometry-based method to calculate available range of motion, quantifying all three directions of intervertebral mobility: sagittal bending (SB), lateral bending (LB), and axial rotation (AR). We observed a strong phylogenetic signal in the structural basis of the vertebral column (vertebral and joint formulae, length proportions of the backbone modules) and an insignificant phylogenetic signal in most characteristics of intervertebral mobility. This indicates that within the existing structure (stabilization of which occurred rather early in different phylogenetic lineages), intervertebral mobility in carnivorans is quite flexible. Our findings reveal that hyenas and canids, which use their jaws to seize prey, are characterized by a noticeably elongated cervical region and significantly higher SB and LB mobility of the cervical joints compared to other carnivorans. In representatives of other carnivoran families, the cervical region is very short, but the flexibility of the neck (both SB and LB) is significantly higher than that of short-necked odd-toed and even-toed ungulates. The lumbar region of the backbone in carnivorans is dorsomobile in the sagittal plane, being on average ~23° more mobile than in artiodactyls and ~38° more mobile than in perissodactyls. However, despite the general dorsomobility, only some representatives of Canidae, Felidae, and Viverridae are superior in lumbar flexibility to the most dorsomobile ungulates. The most dorsomobile artiodactyls are equal or even superior to carnivorans in their ability to engage in dorsal extension during galloping. In contrast, carnivorans are far superior to ungulates in their ability to engage ventral flexion. The cumulative SB in the lumbar region in carnivorans largely depends on the mode of running and hunting. Thus, adaptation to prolonged and enduring pursuit of prey in hyenas is accompanied by markedly reduced SB flexibility in the lumbar region. A more dorsostable run is also a characteristic of the Ursidae, and the peculiar maned wolf. Representatives of Felidae and Canidae have significantly more available SB mobility in the lumbar region. However, they fully engage it only occasionally at key moments of the hunt associated with the direct capture of the prey or when running in a straight line at maximum speed.


Asunto(s)
Vértebras Lumbares , Rango del Movimiento Articular , Carrera , Animales , Fenómenos Biomecánicos , Canidae , Felidae , Hyaenidae , Vértebras Lumbares/fisiología , Filogenia , Carrera/fisiología , Columna Vertebral , Ursidae
8.
Theor Popul Biol ; 156: 12-21, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191077

RESUMEN

Although cooperative hunting is widespread among animals, its benefits are unclear. At low frequencies, cooperative hunting may allow predators to escape competition and access bigger prey that could not be caught by a lone cooperative predator. Cooperative hunting is a more successful strategy when it is common, but its spread can result in overhunting big prey, which may have a lower per-capita growth rate than small prey. We construct a one-predator species, two-prey species model in which predators either learn to hunt small prey alone or learn to hunt big prey cooperatively. Predators first learn vertically from parents, then horizontally (i.e. socially) from random individuals or siblings. After horizontal transmission, they hunt with their learning partner if both are cooperative, and otherwise they hunt alone. Cooperative hunting cannot evolve when initially rare unless predators (a) interact with siblings, or (b) horizontally transmit the cooperative behavior to potential hunting partners. Whereas competition for small prey favors cooperative hunting when this cooperation is initially rare, the frequency of cooperative hunting cannot reach 100% unless big prey is abundant. Furthermore, a mutant that increases horizontal learning can invade if cooperative hunting is present, but not at 100%, because horizontal learning allows pairs of predators to have the same strategy. Our results reveal that the interactions between prey availability, social learning, and degree of cooperation among predators may have important effects on ecosystems.


Asunto(s)
Ecosistema , Caza , Humanos , Animales , Conducta Predatoria , Conducta Cooperativa , Aprendizaje
9.
J Hum Evol ; 196: 103590, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357283

RESUMEN

The Schöningen 13II-4 site is a marvel of Paleolithic archaeology. With the extraordinary preservation of complete wooden spears and butchered large mammal bones dating from the Middle Pleistocene, Schöningen maintains a prominent position in the halls of human origins worldwide. Here, we present the first analysis of the complete large mammal faunal assemblage from Schöningen 13II-4, drawing on multiple lines of zooarchaeological and taphonomic evidence to expose the full spectrum of hominin activities at the site-before, during, and after the hunt. Horse (Equus mosbachensis) remains dominate the assemblage and suggest a recurrent ambush hunting strategy along the margins of the Schöningen paleo-lake. In this regard, Schöningen 13II-4 provides the first undisputed evidence for hunting of a single prey species that can be studied from an in situ, open-air context. The Schöningen hominins likely relied on cooperative hunting strategy to target horse family groups, to the near exclusion of bachelor herds. Horse kills occurred during all seasons, implying a year-round presence of hominins on the Schöningen landscape. All portions of prey skeletons are represented in the assemblage, many complete and in semiarticulation, with little transport of skeletal parts away from the site. Butchery marks are abundant, and adult carcasses were processed more thoroughly than were juveniles. Numerous complete, unmodified bones indicated that lean meat and marrow were not always so highly prized, especially in events involving multiple kills when fat and animal hides may have received greater attention. The behaviors displayed at Schöningen continue to challenge our perceptions and models of past hominin lifeways, further cementing Schöningen's standing as the archetype for understanding hunting adaptations during the European Middle Pleistocene.

10.
Front Zool ; 21(1): 19, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010094

RESUMEN

Research into the hunting behavior in members of the Cricetidae family offers an opportunity to reveal what changes in the predatory behavioral sequences occur when a rodent species shifts from an omnivorous to a predatory lifestyle. The study tests the following hypotheses: are there phylogenetic differences in the divergence of species' predatory lifestyles in hamsters or do ecological factors lead to shaping their hunting behavior? We applied the data compression approach for performing comparative analysis of hunting patterns as biological "texts." The study presents a comparative analysis of hunting behaviors in five Cricetinae species, focusing on the new data obtained for the desert hamster Phodopus roborovskii whose behavior has never been studied before. The hunting behavior of P. roborovskii appeared to be the most variable one. In contrast, behavioral sequences in P. campbelli and Allocricetulus curtatus display more significant order and predictability of behavior during hunting. Optional hunting behavior in the most ancient species P. roborovskii displayed similarities with obligate patterns in "young" Allocricetulus species. It thus turned out to be the most advanced hunter among members of the Phodopus genus. Differences in hunting sequences among Phodopus representatives suggest that the hunting behavior of these species, despite its optional mode, was subject to selection during species splitting within the genus. These results did not reveal the role played by phylogenetic differences in the divergence of species' predatory lifestyles. They suggested that ecological conditions are the main factors in speciation of the hunting behavior in hamsters.

11.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38634142

RESUMEN

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Asunto(s)
Lobos Marinos , Conducta Predatoria , Phocidae , Animales , Lobos Marinos/fisiología , Femenino , Phocidae/fisiología , Regiones Antárticas , Acústica , Reacción de Fuga/fisiología
12.
Ecol Appl ; 34(3): e2952, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417451

RESUMEN

Animals balance costs of antipredator behaviors with resource acquisition to minimize hunting and other mortality risks and maximize their physiological condition. This inherent trade-off between forage abundance, its quality, and mortality risk is intensified in human-dominated landscapes because fragmentation, habitat loss, and degradation of natural vegetation communities is often coupled with artificially enhanced vegetation (i.e., food plots), creating high-risk, high-reward resource selection decisions. Our goal was to evaluate autumn-winter resource selection trade-offs for an intensively hunted avian generalist. We hypothesized human access was a reliable cue for hunting predation risk. Therefore, we predicted resource selection patterns would be spatiotemporally dependent upon levels of access and associated perceived risk. Specifically, we evaluated resource selection of local-scale flights between diel periods for 426 mallards (Anas platyrhynchos) relative to wetland type, forage quality, and differing levels of human access across hunting and nonhunting seasons. Mallards selected areas that prohibited human access and generally avoided areas that allowed access diurnally, especially during the hunting season. Mallards compensated by selecting for high-energy and greater quality foraging patches on allowable human access areas nocturnally when they were devoid of hunters. Postseason selection across human access gradients did not return to prehunting levels immediately, perhaps suggesting a delayed response to reacclimate to nonhunted activities and thus agreeing with the assessment mismatch hypothesis. Last, wetland availability and human access constrained selection for optimal natural forage quality (i.e., seed biomass and forage productivity) diurnally during preseason and hunting season, respectively; however, mallards were freed from these constraints nocturnally during hunting season and postseason periods. Our results suggest risk-avoidance of human accessible (i.e., hunted) areas is a primary driver of resource selection behaviors by mallards and could be a local to landscape-level process influencing distributions, instead of forage abundance and quality, which has long-been assumed by waterfowl conservation planners in North America. Broadly, even an avian generalist, well adapted to anthropogenic landscapes, avoids areas where hunting and human access are allowed. Future conservation planning and implementation must consider management for recreational access (i.e., people) equally important as foraging habitat management for wintering waterfowl.


Asunto(s)
Patos , Ecosistema , Animales , Humanos , Biomasa , Patos/fisiología , Humedales , Conducta Predatoria
13.
J Anim Ecol ; 93(5): 554-566, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38459609

RESUMEN

The costs of foraging can be high while also carrying significant risks, especially for consumers feeding at the top of the food chain. To mitigate these risks, many predators supplement active hunting with scavenging and kleptoparasitic behaviours, in some cases specializing in these alternative modes of predation. The factors that drive differential utilization of these tactics from species to species are not well understood. Here, we use an energetics approach to investigate the survival advantages of hunting, scavenging and kleptoparasitism as a function of predator, prey and potential competitor body sizes for terrestrial mammalian carnivores. The results of our framework reveal that predator tactics become more diverse closer to starvation, while the deployment of scavenging and kleptoparasitism is strongly constrained by the ratio of predator to prey body size. Our model accurately predicts a behavioural transition away from hunting towards alternative modes of predation with increasing prey size for predators spanning an order of magnitude in body size, closely matching observational data across a range of species. We then show that this behavioural boundary follows an allometric power-law scaling relationship where the predator size scales with an exponent nearing 3/4 with prey size, meaning that this behavioural switch occurs at relatively larger threshold prey body size for larger carnivores. We suggest that our approach may provide a holistic framework for guiding future observational efforts exploring the diverse array of predator foraging behaviours.


Asunto(s)
Tamaño Corporal , Carnívoros , Cadena Alimentaria , Conducta Predatoria , Animales , Carnívoros/fisiología , Modelos Biológicos
14.
J Anim Ecol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205404

RESUMEN

It is widely recognized that predators can influence prey through both direct consumption and by inducing costly antipredator behaviours, the latter of which can produce nonconsumptive effects that cascade through trophic systems. Yet, determining how particular prey manage risk in natural settings remains challenging as empirical studies disproportionately focus on single predator-prey dyads. Here, we contrast foraging strategies within the context of a primary and secondary prey to explore how antipredator behaviours emerge as a product of predation intensity as well as the setting in which an encounter takes place. We studied the effects of spotted owls (Strix occidentalis) on two species experiencing asymmetrical risk: dusky-footed woodrats (Neotoma fuscipes; primary prey) and deer mice (Peromyscus spp.; alternative prey). Woodrats are most abundant within young forests, but predominantly captured by owls foraging within mature forests; in contrast, deer mice occur in high densities across forest types and seral stages and are consumed at lower per-capita rates overall. We deployed experimental foraging patches within areas of high and low spotted owl activity, created artificial risky and safe refuge treatments, and monitored behaviour throughout the entirety of prey foraging bouts. Woodrats were more vigilant and foraged less within mature forests and at riskier patches, although the effect of refuge treatment was contingent upon forest type. In contrast, deer mice only demonstrated consistent behavioural responses to riskier refuge treatments; forest type had little effect on perceived risk or the relative importance of refuge treatment. Thus, habitat can interact with predator activity to structure antipredator responses differently for primary versus secondary prey. Our findings show that asymmetrical predation can modulate both the magnitude of perceived risk and the strategies used to manage it, thus highlighting an important and understudied contingency in risk effects research. Evaluating the direct and indirect effects of predation through the paradigm of primary and secondary prey may improve our understanding of how nonconsumptive effects can extend to population- and community-level responses.

15.
Conserv Biol ; 38(5): e14334, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39248774

RESUMEN

Globally, illegal sport hunting can threaten prey populations when unregulated. Due to its covert nature, illegal sport hunting poses challenges for data collection, hindering efforts to understand the full extent of its impacts. We gathered social media data to analyze patterns of illegal sport hunting and wildlife depletion across Brazil. We collected data for 2 years (2018-2020) across 5 Facebook groups containing posts depicting pictures of illegal sport hunting events of native fauna. We described and mapped these hunting events by detailing the number of hunters involved, the number of species, the mean body mass of individuals, and the number and biomass of individuals hunted per unit area, stratified by Brazilian biome. We also examined the effects of defaunation on hunting yield and composition via regression models, rank-abundance curves, and spatial interpolation. We detected 2046 illegal sport hunting posts portraying the hunting of 4658 animals (∼29 t of undressed meat) across all 27 states and 6 natural biomes of Brazil. Of 157 native species targeted by hunters, 19 are currently threatened with extinction. We estimated that 1414 hunters extracted 3251 kg/million km2. Some areas exhibited more pronounced wildlife depletion, in particular the Atlantic Forest and Caatinga biomes. In these areas, there was a shift from large mammals and reptiles to small birds as the main targeted taxa, and biomass extracted per hunting event and mean body mass across all taxonomic groups were lower than in other areas. Our results highlight that illegal sport hunting adds to the pressures of subsistence hunting and the wild meat trade on Brazil's wildlife populations. Enhanced surveillance efforts are needed to reduce illegal sport hunting levels and to develop well-managed sustainable sport hunting programs. These can support wildlife conservation and offer incentives for local communities to oversee designated sport hunting areas.


Exposición de la caza ilegal y la reducción de fauna en el país tropical más grande del mundo por medio de datos de las redes sociales Resumen En todo el mundo, la caza recreativa ilegal puede amenazar a las poblaciones de presas cuando no está regulada. Debido a su naturaleza encubierta, la caza recreativa ilegal plantea dificultades para la recopilación de datos, lo que dificulta la comprensión de su impacto. Recopilamos datos de redes sociales para analizar los patrones de caza recreativa ilegal y agotamiento de la vida silvestre en todo Brasil. Recopilamos datos durante 2 años (2018­2020) a través de cinco grupos de Facebook que contenían publicaciones que mostraban imágenes de eventos de caza recreativa ilegal de fauna nativa. Describimos y mapeamos estos eventos de caza detallando el número de cazadores involucrados, el número de especies, la masa corporal media de los individuos y el número y la biomasa de los individuos cazados por unidad de área, estratificados por bioma brasileño. También examinamos los efectos de la deforestación en el rendimiento y la composición de la caza mediante modelos de regresión, curvas de abundancia e interpolación espacial. Detectamos 2,046 puestos de caza recreativa ilegal que mostraban la caza de 4,658 animales (∼29 t de carne sin desollar) en los 27 estados y 6 biomas naturales de Brasil. De las 157 especies autóctonas objetivo de los cazadores, 18 están actualmente en peligro de extinción. Se calcula que 1,414 cazadores extrajeron 3,251 kg/millón de km2. Algunas zonas mostraron una defaunación más pronunciada, en particular los biomas de la Mata Atlántica y la Caatinga. En estas áreas, se produjo un cambio de grandes mamíferos y reptiles a pequeñas aves como principales taxones objetivo, y la biomasa extraída por evento de caza y la masa corporal media en todos los grupos taxonómicos fueron menores que en otras áreas. Nuestros resultados ponen de manifiesto que la caza recreativa ilegal se suma a las presiones de la caza de subsistencia y el comercio de carne salvaje sobre las poblaciones de fauna de Brasil. Es necesario intensificar los esfuerzos de vigilancia para reducir los niveles de caza recreativa ilegal y desarrollar programas de caza recreativa sostenibles y bien gestionados. Estos programas pueden contribuir a la conservación de la fauna y ofrecer incentivos a las comunidades locales para que supervisen las zonas designadas para la caza recreativa.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Caza , Medios de Comunicación Sociales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Brasil , Animales , Deportes/legislación & jurisprudencia , Humanos
16.
Conserv Biol ; 38(4): e14245, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456548

RESUMEN

Understanding which species will be extirpated in the aftermath of large-scale human disturbance is critical to mitigating biodiversity loss, particularly in hyperdiverse tropical biomes. Deforestation is the strongest driver of contemporary local extinctions in tropical forests but may occur at different tempos. The 2 most extensive tropical forest biomes in South America-the Atlantic Forest and the Amazon-have experienced historically divergent pathways of habitat loss and biodiversity decay, providing a unique case study to investigate rates of local species persistence on a single continent. We quantified medium- to large-bodied mammal species persistence across these biomes to elucidate how landscape configuration affects their persistence and associated ecological functions. We collected occurrence data for 617 assemblages of medium- to large-bodied mammal species (>1 kg) in the Atlantic Forest and the Amazon. Analyzing natural habitat cover based on satellite data (1985-2022), we employed descriptive statistics and generalized linear models (GLMs) to investigate ecospecies occurrence patterns in relation to habitat cover across the landscapes. The subregional erosion of Amazonian mammal assemblage diversity since the 1970s mirrors that observed since the colonial conquest of the Atlantic Forest, given that 52.8% of all Amazonian mammals are now on a similar trajectory. Four out of 5 large mammals in the Atlantic Forest were prone to extirpation, whereas 53% of Amazonian mammals were vulnerable to extirpation. Greater natural habitat cover increased the persistence likelihood of ecospecies in both biomes. These trends reflected a median local species loss 63.9% higher in the Atlantic Forest than in the Amazon, which appears to be moving toward a turning point of forest habitat loss and degradation. The contrasting trajectories of species persistence in the Amazon and Atlantic Forest domains underscore the importance of considering historical habitat loss pathways and regional biodiversity erosion in conservation strategies. By focusing on landscape configuration and identifying essential ecological functions associated with large vertebrate species, conservation planning and management practices can be better informed.


Uso de la pérdida histórica de hábitat para predecir la desaparición de mamíferos contemporáneos en los bosques neotropicales Resumen Tener conocimiento de cuáles especies desaparecerán después de una perturbación humana es de suma importancia para mitigar la pérdida de la biodiversidad, particularmente en los biomas híper diversos. La deforestación es la principal causante de las extinciones locales contemporáneas en los bosques tropicales, aunque puede ocurrir en diferentes tiempos. Los dos bosques tropicales más extensos de América del Sur ­ el Bosque Atlántico y la Amazonia ­ han experimentado formas históricamente divergentes de pérdida de hábitat y decadencia de biodiversidad, lo que proporciona un caso único de estudio para investigar las tasas de persistencia de las especies locales en un solo continente. Cuantificamos la persistencia de las especies de mamíferos de talla mediana a grande en estos dos bosques para aclarar cómo la configuración del paisaje afecta su persistencia y las funciones ecológicas asociadas. Recolectamos datos de presencia de 617 ensambles de especies de mamíferos de talla mediana a grande (>1 kg) en el Bosque Atlántico y en la Amazonia. Analizamos la cobertura natural del hábitat con base en datos satelitales (1985­2022) y empleamos estadística descriptiva y modelos lineales generalizados (MLG) para investigar los patrones de presencia de las eco especies en relación con la cobertura del hábitat en los distintos paisajes. La erosión subregional de la diversidad de ensambles de mamíferos en la Amazonia desde los 70s es igual a la observada en el Bosque Atlántico desde la conquista colonial, dado que 52.8% de todos los mamíferos amazónicos se encuentran en una trayectoria similar. Cuatro de los cinco grandes mamíferos en el Bosque Atlántico estaban propensos a desaparecer, mientras que el 53% de los mamíferos amazónicos estaban vulnerables a desaparecer. Una mayor cobertura natural del hábitat incrementó la probabilidad de persistencia de las eco especies en ambos bosques. Estas tendencias reflejaron una pérdida mediana de especies locales 63.9% mayor en el Bosque Atlántico que en la Amazonia, lo cual parece dirigirse hacia un momento decisivo para la degradación y pérdida del hábitat del bosque. Las trayectorias contrastantes de la persistencia de especies en el Bosque Atlántico y la Amazonia destacan la importancia de considerar dentro de las estrategias de conservación las maneras en las que se ha perdido históricamente el hábitat y la erosión de la biodiversidad regional. Si nos enfocamos en la configuración del paisaje y en la identificación de las funciones ecológicas esenciales asociadas con las especies grandes de vertebrados, podemos informar de mejor manera a la planeación de la conservación y las prácticas de manejo.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Extinción Biológica , Bosques , Mamíferos , Animales , Mamíferos/fisiología , Clima Tropical , Ecosistema , Brasil
17.
Conserv Biol ; 38(4): e14243, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38433373

RESUMEN

Wildlife conservation depends on supportive social as well as biophysical conditions. Social identities such as hunter and nonhunter are often associated with different attitudes toward wildlife. However, it is unknown whether dynamics within and among these identity groups explain how attitudes form and why they differ. To investigate how social identities help shape wildlife-related attitudes and the implications for wildlife policy and conservation, we built a structural equation model with survey data from Montana (USA) residents (n = 1758) that tested how social identities affect the relationship between experiences with grizzly bears (Ursus arctos horribilis) and attitudes toward the species. Model results (r2 = 0.51) demonstrated that the hunter identity magnified the negative effect of vicarious property damage on attitudes toward grizzly bears (ß = -0.381, 95% confidence interval [CI]: -0.584 to -0.178, p < 0.001), which in turn strongly influenced acceptance (ß = -0.571, 95% CI: -0.611 to -0.531, p < 0.001). Our findings suggested that hunters' attitudes toward grizzly bears likely become more negative primarily because of in-group social interactions about negative experiences, and similar group dynamics may lead nonhunters to disregard the negative experiences that out-group members have with grizzly bears. Given the profound influence of social identity on human cognitions and behaviors in myriad contexts, the patterns we observed are likely important in a variety of wildlife conservation situations. To foster positive conservation outcomes and minimize polarization, management strategies should account for these identity-driven perceptions while prioritizing conflict prevention and promoting positive wildlife narratives within and among identity groups. This study illustrates the utility of social identity theory for explaining and influencing human-wildlife interactions.


La influencia de la identidad social sobre la actitud hacia la fauna Resumen La conservación de la fauna depende de condiciones de apoyo tanto sociales como biofísicas. La identidad social, como ser cazador o no, con frecuencia está asociada a las diferentes actitudes hacia la fauna. Sin embargo, no sabemos si las dinámicas dentro y entre estos grupos de identidad explican cómo las actitudes se forman y porqué son diferentes. Construimos un modelo de ecuación estructural con información de encuestas realizadas a 1,758 residentes de Montana (Estados Unidos) para conocer cómo la identidad social ayuda a formar la actitud relacionada con la fauna y las implicaciones que tiene para la conservación y políticas de fauna. El modelo analizó cómo la identidad social afecta la relación entre las experiencias con osos pardos (Ursus arctos horribilis) y la actitud hacia la especie. Los resultados del modelo (r2 = 0.51) demostraron que la identidad de cazador aumentaba el efecto negativo del daño indirecto a la propiedad sobre la actitud hacia los osos (ß=­0.381, 95% CI ­0.584 a ­0.178, p<0.001), lo cual en cambio tenía una gran influencia sobre la aceptación (ß=­0.571, 95% CI ­0.611 a ­0.531, p<0.001). Nuestros descubrimientos sugieren que la actitud de los cazadores hacia los osos probablemente se vuelve más negativa principalmente debido a las interacciones sociales del endogrupo en torno a las experiencias negativas; las dinámicas similares pueden llevar a los no cazadores a menospreciar las experiencias negativas que los miembros del exogrupo han tenido con los osos. Dada la influencia profunda que tiene la identidad social sobre la cognición humana y el comportamiento en una miríada de contextos, los patrones que observamos probablemente sean importantes en una variedad de situaciones de conservación de fauna. Para promover los resultados positivos de conservación y minimizar la polarización, las estrategias de manejo deberían considerar estas percepciones influenciadas por la identidad mientras se prioriza la prevención de conflictos y se promueven narrativas positivas de fauna dentro y entre los grupos de identidad. Este estudio demuestra la utilidad que tiene la teoría de identidad social para explicar e influenciar las interacciones humano­fauna.


Asunto(s)
Actitud , Conservación de los Recursos Naturales , Identificación Social , Ursidae , Animales , Ursidae/psicología , Ursidae/fisiología , Montana , Humanos , Animales Salvajes/psicología
18.
Environ Res ; 249: 118229, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325785

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.


Asunto(s)
Aves , Monitoreo del Ambiente , Fluorocarburos , Animales , New Mexico , Fluorocarburos/análisis , Humanos , Aves/metabolismo , Mamíferos , Contaminantes Ambientales/análisis , Cadena Alimentaria , Clima Desértico , Exposición a Riesgos Ambientales
19.
J Hered ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316562

RESUMEN

The African hunting dog (Lycaon pictus, 2n=78) once ranged over most sub-Saharan ecosystems except its deserts and rainforests. However as a result of (still ongoing) population declines, today they remain only as small fragmented populations. Furthermore, the future of the species remains unclear, due to both anthropogenic pressure as well as interactions with domestic dogs, thus their preservation is a conservation priority. On the tree of life, the hunting dog is basal to Canis and Cuon and forms a crown group with them, making it a useful species for comparative genomic studies. Here, we present a diploid chromosome level assembly of an African hunting dog. Assembled according to VGP guidelines from a combination of PacBio HiFi reads and HiC data, it is phased at the level of individual chromosomes. The maternal (pseudo)haplotype (mat) of our assembly has a length of 2.38 Gbp, and 99.36 % of the sequence is encompassed by 39 chromosomal scaffolds. The rest is included in only 36 unplaced short scaffolds. At the contig level, mat consists of only 166 contigs with an N50 of 39 Mbp. BUSCO analysis showed 95.4 % completeness based on Сarnivora conservative genes (carnivora_odb10). When compared to other available genomes from subtribe Canina, the quality of the assembly is excellent, typically between the 1st and 3rd depending on the parameter used, and a significant improvement on previously published genomes for the species. We hope this assembly will play an important role in future conservation efforts and comparative studies of canid genomes.

20.
BMC Vet Res ; 20(1): 320, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020344

RESUMEN

BACKGROUND: The first outbreak of African Swine Fever (ASF) in Sweden was detected in 2023 in wild boar. This study was conducted before the first ASF outbreak with the objective of investigating Swedish hunters' perceptions and practices pertaining to ASF ahead of any potential future outbreak. A mixed-methods interview study with Swedish wild boar hunters, consisting of focus group discussions and a questionnaire, was undertaken between October 2020 and December 2021. Six focus groups were conducted online, and an online questionnaire with questions related to practices and habits concerning hunting, the use of bait and hunting trips was sent to all members of the Swedish Hunting and Wildlife Association. A total of 3244 responses were received. RESULTS: Three general themes were identified in a thematic analysis of the data from the focus groups: hunters are willing to engage in ASF prevention and control, simplicity and feasibility are crucial for the implementation of reporting, sampling and control measures, and more information and the greater involvement of the authorities are required in ASF prevention and control. Results from the questionnaire showed that the use of bait was common. Products of animal origin were rarely used for baiting; the most common product used was maize. Hunting trips abroad, especially outside of the Nordic countries, were uncommon. CONCLUSIONS: Hunting tourism and the use of bait do not seem to constitute a major risk for the introduction of ASF to wild boar populations in Sweden. The accessibility of relevant information for each concerned stakeholder and the ease of reporting and sampling are crucial to maintain the positive engagement of hunters.


Asunto(s)
Fiebre Porcina Africana , Brotes de Enfermedades , Sus scrofa , Animales , Fiebre Porcina Africana/epidemiología , Suecia/epidemiología , Brotes de Enfermedades/veterinaria , Humanos , Porcinos , Masculino , Encuestas y Cuestionarios , Femenino , Conocimientos, Actitudes y Práctica en Salud , Grupos Focales , Persona de Mediana Edad , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA