Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 717
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(2): e23652, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348708

RESUMEN

Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.


Asunto(s)
Dieta Alta en Grasa , Dimetilfumarato , Alcohol Feniletílico/análogos & derivados , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Dimetilfumarato/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL
2.
Acta Pharmacol Sin ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313515

RESUMEN

Acetaminophen (APAP) overdose-induced acute liver injury (ALI) is characterized by extensive oxidative stress, and the clinical interventions for this adverse effect remain limited. Astilbin is an active compound found in the rhizome of Smilax glabra Roxb. with anti-inflammatory and antioxidant activities. Due to its low oral bioavailability, astilbin can accumulate in the intestine, which provides a basis for the interaction between astilbin and gut microbiota (GM). In the present study we investigated the protective effects of astilbin against APAP-induced ALI by focusing on the interaction between astilbin and GM. Mice were treated with astilbin (50 mg·kg-1·d-1, i.g.) for 7 days. After the last administration of astilbin for 2 h, the mice received APAP (300 mg/kg, i.g.) to induce ALI. We showed that oral administration of astilbin significantly alleviated APAP-induced ALI by altering the composition of GM and enriching beneficial metabolites including hydroxytyrosol (HT). GM depletion using an "antibiotics cocktail" or paraoral administration of astilbin abolished the hepatoprotective effects of astilbin. On the other hand, administration of HT (10 mg/kg, i.g.) caused similar protective effects in APAP-induced ALI mice. Transcriptomic analysis of the liver tissue revealed that HT inhibited reactive oxygen species and inflammation-related signaling in APAP-induced ALI; HT promoted activation of the Nrf2 signaling pathway to combat oxidative stress following APAP challenge in a sirtuin-6-dependent manner. These results highlight that oral astilbin ameliorates APAP-induced ALI by manipulating the GM and metabolites towards a more favorable profile, and provide an alternative therapeutic strategy for alleviating APAP-induced ALI.

3.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281774

RESUMEN

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Asunto(s)
Metotrexato , Alcohol Feniletílico , Fibrosis Pulmonar , Animales , Ratas , Dexametasona/farmacología , Fibrina/metabolismo , Interleucina-4/metabolismo , Pulmón/patología , Metotrexato/efectos adversos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Tromboplastina/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652203

RESUMEN

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Olea , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Filogenia , Olea/genética , Olea/metabolismo , Alcohol Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Glucósidos Iridoides/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Fosfato de Piridoxal/metabolismo , Iridoides/metabolismo , Genes de Plantas
5.
Cryobiology ; 114: 104840, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38104853

RESUMEN

Human sperm cryopreservation is a routine procedure in assisted reproductive technology, but it has detrimental effects on different sperm parameters due to oxidative stress. Our objective was to assess the impacts of hydroxytyrosol (HT), as an antioxidant, on human sperm parameters following cryopreservation. In the first phase, 20 normal human semen samples were cryopreserved using the rapid freezing method with different concentrations of HT including 0, 50, 100, 150, and 200 µg/mL. In the second phase, 20 normal semen samples were collected and cryopreserved with 50 and 100 µg/mL HT. The beneficial effects of HT were determined by evaluation of motility (computer-assisted sperm analysis; CASA), viability (Eosin-nigrosine stain), DNA integrity (sperm chromatic dispersion test, SCD), reactive oxygen species (DCF and DHE staining by flowcytometry) lipid peroxidation (malondialdehyde, MDA test) and mitochondrial membrane potential (JC1 staining by flowcytometry) of sperm after cryopreservation. After thawing, sperm motility had an increasing trend in 50 and 100 µg/mL HT groups in comparison with other groups, althought the difference was not significant. However, sperm viability was significantly increased at 50 and 100 µg/mL HT. Our data also showed that sperm DNA fragmentation was significantly decreased after thawing at 100 µg/mL in comparison with 0 and 50 µg/mL HT. However, the level of intracellular reactive oxygen species, lipid peroxidation and mitochondrial membrane potential were not significantly different between groups. Our results showed that HT may have protective effects on the viability and DNA integrity of human sperm during the freezing-thawing process.


Asunto(s)
Criopreservación , Alcohol Feniletílico/análogos & derivados , Preservación de Semen , Humanos , Masculino , Criopreservación/métodos , Semen , Especies Reactivas de Oxígeno , Motilidad Espermática , Preservación de Semen/métodos , Espermatozoides , Antioxidantes/farmacología , ADN
6.
Curr Pain Headache Rep ; 28(7): 565-586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652420

RESUMEN

PURPOSE OF REVIEW: Fibromyalgia syndrome (FMS) is a disease of unknown pathophysiology, with the diagnosis being based on a set of clinical criteria. Proteomic analysis can provide significant biological information for the pathophysiology of the disease but may also reveal biomarkers for diagnosis or therapeutic targets. The present systematic review aims to synthesize the evidence regarding the proteome of adult patients with FMS using data from observational studies. RECENT FINDINGS: An extensive literature search was conducted in MEDLINE/PubMed, CENTRAL, and clinicaltrials.gov from inception until November 2022. The study protocol was published in OSF. Two independent reviewers evaluated the studies and extracted data. The quality of studies was assessed using the modified Newcastle-Ottawa scale adjusted for proteomic research. Ten studies fulfilled the protocol criteria, identifying 3328 proteins, 145 of which were differentially expressed among patients with FMS against controls. The proteins were identified in plasma, serum, cerebrospinal fluid, and saliva samples. The control groups included healthy individuals and patients with pain (inflammatory and non-inflammatory). The most important proteins identified involved transferrin, α-, ß-, and γ-fibrinogen chains, profilin-1, transaldolase, PGAM1, apolipoprotein-C3, complement C4A and C1QC, immunoglobin parts, and acute phase reactants. Weak correlations were observed between proteins and pain sensation, or quality of life scales, apart from the association of transferrin and a2-macroglobulin with moderate-to-severe pain sensation. The quality of included studies was moderate-to-good. FMS appears to be related to protein dysregulation in the complement and coagulation cascades and the metabolism of iron. Several proteins may be dysregulated due to the excessive oxidative stress response.


Asunto(s)
Fibromialgia , Estudios Observacionales como Asunto , Proteómica , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , Fibromialgia/metabolismo , Fibromialgia/sangre , Proteómica/métodos
7.
Reprod Domest Anim ; 59(6): e14588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822558

RESUMEN

Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 µg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 µg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 µg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.


Asunto(s)
Antioxidantes , Pollos , Criopreservación , Alcohol Feniletílico , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Antioxidantes/farmacología , Análisis de Semen/veterinaria , Crioprotectores/farmacología , Malondialdehído/análisis
8.
Chem Biodivers ; : e202401714, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294100

RESUMEN

This study investigated the biological activities of a hydroxytyrosol-rich extract from Oleaeuropaea leaves, particularly its ability to eradicate severe pathogenic bacteria producing Extended-Spectrum Beta-Lactamases (ESBLs). The latter bacteria are emerging microorganisms that pose significant challenges due to their resistance to a broad range of potent therapeutic drugs. The extract was prepared through an accessible acid hydrolysis method. In vitro and In silico analyses through MIC, MBC analysis and molecular docking were conducted to evaluate the antibacterial properties. The extract showed remarkable antioxidant activity and significant antibacterial potential against reference species and ESBL bacteria. MIC and MBC calculations confirmed the extract's capacity to kill bacteria rather than just inhibit their growth. Further in silico analyzes demonstrated the high binding affinity of HT to the active sites of the gyrase B subunit and the peptidoglycan DD-transpeptidase domain from proteins located in the cytoplasm and the cell wall of the bacteria, respectively. Results confirmed the structure-activity relationship and the ability of HT to disrupt essential bacterial functions. This study validates the debated antimicrobial potential of HT and highlights its importance as a potential therapeutic agent against resistant bacteria, which is a critical area of research given the global challenge of antibiotic resistance.

9.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337541

RESUMEN

Tyrosol and hydroxytyrosol are powerful phenolic antioxidants occurring in olive oil and in by-products from olive processing. Due to their high polarity, esterification or other lipophilization is necessary to make them compatible with lipid matrices. Hydroxytyrosol methyl carbonate is a more effective antioxidant than dibutylhydroxytoluene or α-tocopherol and together with tyrosol methyl carbonate exerts interesting pharmacological properties. The purpose of this work was the enzymatic preparation of alkyl carbonates of tyrosol and hydroxytyrosol. A set of 17 hydrolases was tested in the catalysis of tyrosol methoxycarbonylation in neat dimethyl carbonate to find an economically feasible alternative to the recently reported synthesis of methyl carbonates catalyzed by Novozym 435. Novozym 435 was, however, found to be the best performing catalyst, while Novozym 735, pig pancreatic lipase, lipase F-AK and Lipex 100T exhibited limited reactivity. No enzyme accepted 1,2-propylene carbonate as the acylation donor. Under optimized reaction conditions, Novozym 435 was used in the batch preparation of tyrosol methyl carbonate and hydroxytyrosol methyl carbonate in quantitative yields. The enzymatic methoxycarbonylation of tyrosol and hydroxytyrosol can also be used as a method for their selective protection in enzymatic syntheses of phenylethanoid glycosides catalyzed with enzymes comprising high levels of acetyl esterase side activity.


Asunto(s)
Enzimas Inmovilizadas , Proteínas Fúngicas , Lipasa , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Lipasa/química , Animales , Antioxidantes/química , Porcinos , Carbonatos/química , Hidrolasas/metabolismo
10.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891778

RESUMEN

Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1ß, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.


Asunto(s)
Ácidos y Sales Biliares , Mucosa Intestinal , Estrés Oxidativo , Alcohol Feniletílico , Animales , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Porcinos , Ácidos y Sales Biliares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
11.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203800

RESUMEN

Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.


Asunto(s)
Enfermedades Musculoesqueléticas , Ácido Oleanólico/análogos & derivados , Alcohol Feniletílico/análogos & derivados , Tendinopatía , Ratas , Animales , Ratas Wistar , Suplementos Dietéticos , Metabolismo de los Lípidos , Tendinopatía/etiología , Ácido Aspártico
12.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928246

RESUMEN

Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.


Asunto(s)
Antibacterianos , Antioxidantes , Olea , Fenoles , Extractos Vegetales , Olea/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fenoles/análisis , Embalaje de Alimentos , Polifenoles/química , Polifenoles/farmacología , Polifenoles/aislamiento & purificación , Ondas Ultrasónicas , Pruebas de Sensibilidad Microbiana
13.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000426

RESUMEN

Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.


Asunto(s)
Electrólisis , Hígado , Ratas Wistar , Tendinopatía , Animales , Electrólisis/métodos , Ratas , Tendinopatía/metabolismo , Tendinopatía/terapia , Tendinopatía/etiología , Tendinopatía/patología , Hígado/metabolismo , Hígado/patología , Masculino , Metabolismo de los Lípidos , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Modelos Animales de Enfermedad
14.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928048

RESUMEN

Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.


Asunto(s)
Hidrógeno , Aceite de Oliva , Fenoles , Protones , Aceite de Oliva/química , Hidrógeno/química , Fenoles/química , Transporte de Electrón , Cinética , Termodinámica , Antioxidantes/química
15.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732018

RESUMEN

Hydroxytyrosol (HT) is a bioactive olive oil phenol with beneficial effects in a number of pathological situations. We have previously demonstrated that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic-stroke-associated damage in mice. Our exploratory pilot study examined this effect in humans. Particularly, a nutritional supplement containing 15 mg of HT/day was administered to patients 24 h after the onset of stroke, for 45 days. Biochemical and oxidative-stress-related parameters, blood pressure levels, serum proteome, and neurological and functional outcomes were evaluated at 45 and 90 days and compared to a control group. The main findings were that the daily administration of HT after stroke could: (i) favor the decrease in the percentage of glycated hemoglobin and diastolic blood pressure, (ii) control the increase in nitric oxide and exert a plausible protective effect in oxidative stress, (iii) modulate the evolution of the serum proteome and, particularly, the expression of apolipoproteins, and (iv) be beneficial for certain neurological and functional outcomes. Although a larger trial is necessary, this study suggests that HT could be a beneficial nutritional complement in the management of human stroke.


Asunto(s)
Suplementos Dietéticos , Estrés Oxidativo , Alcohol Feniletílico , Accidente Cerebrovascular , Humanos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Masculino , Accidente Cerebrovascular/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Femenino , Anciano , Proyectos Piloto , Persona de Mediana Edad , Presión Sanguínea/efectos de los fármacos , Óxido Nítrico/metabolismo
16.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893322

RESUMEN

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Olea , Fenoles , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Olea/química , Fenoles/farmacología , Fenoles/química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Depresión/tratamiento farmacológico , Aceite de Oliva/química , Simulación por Computador
17.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257212

RESUMEN

Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.


Asunto(s)
Glucósidos Iridoides , Olea , Alcohol Feniletílico/análogos & derivados , Humanos , Antioxidantes/farmacología , Grecia , Hidrólisis , Hojas de la Planta , Extractos Vegetales/farmacología
18.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276626

RESUMEN

Monoamine oxidase and xanthine oxidase inhibitors represent useful multi-target drugs for the prevention, attenuation, and treatment of oxidative damage and neurodegenerative disorders. Chimeric molecules, constituted by naturally derived compounds linked to drugs, represent lead compounds to be explored for the discovery of new synthetic drugs acting as enzyme inhibitors. We have previously reported that seven hydroxytyrosol-donepezil hybrid compounds play a protective role in an in vitro neuronal cell model of Alzheimer's disease. In this work, we analyzed the effects exerted by the hybrid compounds on the activity of monoamine oxidase A (MAO-A) and B (MAO-B), as well as on xanthine oxidase (XO), enzymes involved in both neurodegenerative disorders and oxidative stress. The results pointed to the identification, among the compounds tested, of selective inhibitors between the two classes of enzymes. While the 4-hydroxy-3-methoxyphenethyl 1-benzylpiperidine-4-carboxylate- (HT3) and the 4-hydroxyphenethyl 1-benzylpiperidine-4-carboxylate- donepezil derivatives (HT4) represented the best inhibitors of MAO-A, with a scarce effect on MAO-B, they were almost ineffective on XO. On the other hand, the 4,5-dihydroxy-2-nitrophenethyl 1-benzylpiperidine-4-carboxylate donepezil derivative (HT2), the least efficient MAO inhibitor, acted like the best XO inhibitor. Therefore, the differential enzymatic targets identified among the hybrid compounds synthesized enhance the possible applications of these polyphenol-donepezil hybrids in neurodegenerative disorders and oxidative stress.


Asunto(s)
Enfermedades Neurodegenerativas , Alcohol Feniletílico/análogos & derivados , Humanos , Donepezilo/farmacología , Donepezilo/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Xantina Oxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoaminooxidasa/metabolismo , Estrés Oxidativo , Relación Estructura-Actividad
19.
J Sci Food Agric ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041432

RESUMEN

BACKGROUND: Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS: The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION: The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

20.
J Food Sci Technol ; 61(1): 161-168, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192711

RESUMEN

In this work, pilot-scale nanofiltration was used to obtain aqueous solutions rich in hydroxytyrosol and tyrosol from olive oil by-products. A large-scale simple process involving olive mill standard machinery (blender and decanter) was used for the olive pomace pre-treatment with water. The aqueous extract was then directly fed to a nanofiltration unit and concentrated by reverse osmosis. Final concentration factors ranged between 7 and 9 for hydroxytyrosol and between 4 and 7 for tyrosol. The final aqueous solution, obtained as retentate stream of reverse osmosis, was highly concentrated in hydroxytyrosol and tyrosol and their concentrations remained stable over at least 14 months.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA