Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.466
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774681

RESUMEN

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Frontal , Microglía , Neuronas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Neuronas/patología , Células Piramidales , Biopsia , Lóbulo Frontal/patología , Análisis de Expresión Génica de una Sola Célula , Núcleo Celular/metabolismo , Núcleo Celular/patología
2.
Cell ; 184(7): 1740-1756.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33705688

RESUMEN

The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.


Asunto(s)
Microbioma Gastrointestinal , Locomoción , Conducta Social , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Trasplante de Microbiota Fecal , Heces/microbiología , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/microbiología , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/terapia , Análisis de Componente Principal , Agitación Psicomotora/patología , Transmisión Sináptica
3.
Cell ; 177(5): 1280-1292.e20, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031006

RESUMEN

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Conducta Animal , Comunicación Celular , Neuronas/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Astrocitos/patología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/patología , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapsis/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
4.
Annu Rev Neurosci ; 41: 277-297, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986165

RESUMEN

A major mystery of many types of neurological and psychiatric disorders, such as Alzheimer's disease (AD), remains the underlying, disease-specific neuronal damage. Because of the strong interconnectivity of neurons in the brain, neuronal dysfunction necessarily disrupts neuronal circuits. In this article, we review evidence for the disruption of large-scale networks from imaging studies of humans and relate it to studies of cellular dysfunction in mouse models of AD. The emerging picture is that some forms of early network dysfunctions can be explained by excessively increased levels of neuronal activity. The notion of such neuronal hyperactivity receives strong support from in vivo and in vitro cellular imaging and electrophysiological recordings in the mouse, which provide mechanistic insights underlying the change in neuronal excitability. Overall, some key aspects of AD-related neuronal dysfunctions in humans and mice are strikingly similar and support the continuation of such a translational strategy.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Ratones , Red Nerviosa/patología , Vías Nerviosas/patología
5.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38050105

RESUMEN

Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Humanos , Animales , Neuronas/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología
6.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38969506

RESUMEN

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.


Asunto(s)
Sinapsis Eléctricas , Síndrome del Cromosoma X Frágil , Neuronas Motoras , Proteínas de Pez Cebra , Pez Cebra , Animales , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/genética , Sinapsis Eléctricas/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Neuronas Motoras/fisiología , Modelos Animales de Enfermedad , Conexinas/genética , Conexinas/metabolismo , Animales Modificados Genéticamente , Hipercinesia/fisiopatología , Interneuronas/fisiología , Interneuronas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
7.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38286629

RESUMEN

Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Humanos , Femenino , Niño , Adulto Joven , Adulto , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Mapeo Encefálico , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
8.
Semin Cell Dev Biol ; 139: 24-34, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337739

RESUMEN

One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic ß-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Transmisión Sináptica/fisiología , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/metabolismo
9.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499151

RESUMEN

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Presenilina-1 , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Sitios de Unión , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Neuronas/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Unión Proteica , Péptidos/metabolismo
10.
Am J Hum Genet ; 109(8): 1436-1457, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35907405

RESUMEN

ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Adulto , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética
11.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142281

RESUMEN

Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Esquizofrenia , Humanos , Trastorno Bipolar/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
12.
Proc Natl Acad Sci U S A ; 119(17): e2120529119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35467980

RESUMEN

Most systems neuroscience studies fall into one of two categories: basic science work aimed at understanding the relationship between neurons and behavior, or translational work aimed at developing treatments for neuropsychiatric disorders. Here we use these two approaches to inform and enhance each other. Our study both tests hypotheses about basic science neural coding principles and elucidates the neuronal mechanisms underlying clinically relevant behavioral effects of systemically administered methylphenidate (Ritalin). We discovered that orally administered methylphenidate, used clinically to treat attention deficit hyperactivity disorder (ADHD) and generally to enhance cognition, increases spatially selective visual attention, enhancing visual performance at only the attended location. Further, we found that this causal manipulation enhances vision in rhesus macaques specifically when it decreases the mean correlated variability of neurons in visual area V4. Our findings demonstrate that the visual system is a platform for understanding the neural underpinnings of both complex cognitive processes (basic science) and neuropsychiatric disorders (translation). Addressing basic science hypotheses, our results are consistent with a scenario in which methylphenidate has cognitively specific effects by working through naturally selective cognitive mechanisms. Clinically, our findings suggest that the often staggeringly specific symptoms of neuropsychiatric disorders may be caused and treated by leveraging general mechanisms.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Corteza Visual , Animales , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Macaca mulatta , Metilfenidato/farmacología , Neuronas/fisiología , Corteza Visual/fisiología
13.
Proc Natl Acad Sci U S A ; 119(30): e2114094119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858441

RESUMEN

Clinical evidence suggests that pain hypersensitivity develops in patients with attention-deficit/hyperactivity disorder (ADHD). However, the mechanisms and neural circuits involved in these interactions remain unknown because of the paucity of studies in animal models. We previously validated a mouse model of ADHD obtained by neonatal 6-hydroxydopamine (6-OHDA) injection. Here, we have demonstrated that 6-OHDA mice exhibit a marked sensitization to thermal and mechanical stimuli, suggesting that phenotypes associated with ADHD include increased nociception. Moreover, sensitization to pathological inflammatory stimulus is amplified in 6-OHDA mice as compared to shams. In this ADHD model, spinal dorsal horn neuron hyperexcitability was observed. Furthermore, ADHD-related hyperactivity and anxiety, but not inattention and impulsivity, are worsened in persistent inflammatory conditions. By combining in vivo electrophysiology, optogenetics, and behavioral analyses, we demonstrated that anterior cingulate cortex (ACC) hyperactivity alters the ACC-posterior insula circuit and triggers changes in spinal networks that underlie nociceptive sensitization. Altogether, our results point to shared mechanisms underlying the comorbidity between ADHD and nociceptive sensitization. This interaction reinforces nociceptive sensitization and hyperactivity, suggesting that overlapping ACC circuits may be targeted to develop better treatments.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Hiperalgesia , Dolor , Animales , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Modelos Animales de Enfermedad , Giro del Cíngulo/fisiopatología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Conducta Impulsiva , Ratones , Optogenética , Oxidopamina/farmacología , Dolor/inducido químicamente , Dolor/fisiopatología , Simpaticolíticos/farmacología
14.
J Allergy Clin Immunol ; 153(3): 672-683.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931708

RESUMEN

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.


Asunto(s)
Asma , Receptores de Citocinas , Ratones , Animales , Humanos , Receptores de Citocinas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Pulmón , Citocinas/metabolismo , Ratones Transgénicos , Inflamación , Alérgenos , Esteroides/uso terapéutico , Fibrosis , Pyroglyphidae
15.
J Physiol ; 602(8): 1509-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36866974

RESUMEN

Increasing evidence suggests that simply reducing ß-amyloid (Aß) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aß-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.

16.
J Neurochem ; 168(6): 1060-1079, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38308496

RESUMEN

Neuronal hyperactivity induced by ß-amyloid (Aß) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aß increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aß-treated neurons in vitro and the cortex of APP/PS1 mice in vivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aß-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Cadherinas , Ratones Noqueados , Neuronas , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Neuronas/metabolismo , Ratones Transgénicos , Sinapsis/metabolismo , Sinapsis/patología , Proteínas Relacionadas con las Cadherinas , Ratones Endogámicos C57BL , Masculino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/genética , Células Cultivadas , Trastornos del Conocimiento/metabolismo
17.
Neurobiol Dis ; 194: 106473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493903

RESUMEN

The pathophysiological process of Alzheimer's disease (AD) is believed to begin many years before the formal diagnosis of AD dementia. This protracted preclinical phase offers a crucial window for potential therapeutic interventions, yet its comprehensive characterization remains elusive. Accumulating evidence suggests that amyloid-ß (Aß) may mediate neuronal hyperactivity in circuit dysfunction in the early stages of AD. At the same time, neural activity can also facilitate Aß accumulation through intricate feed-forward interactions, complicating elucidating the conditions governing Aß-dependent hyperactivity and its diagnostic utility. In this study, we use biophysical modeling to shed light on such conditions. Our analysis reveals that the inherently nonlinear nature of the underlying molecular interactions can give rise to the emergence of various modes of hyperactivity. This diversity in the mechanisms of hyperactivity may ultimately account for a spectrum of AD manifestations.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Neuronas/fisiología , Comunicación Celular
18.
Eur J Neurosci ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237477

RESUMEN

Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.

19.
Eur J Neurosci ; 60(2): 3858-3890, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38816965

RESUMEN

Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.


Asunto(s)
Ritmo Circadiano , Trastornos del Neurodesarrollo , Humanos , Animales , Trastornos del Neurodesarrollo/fisiopatología , Ritmo Circadiano/fisiología , Trastornos Cronobiológicos/fisiopatología , Melatonina/metabolismo
20.
Eur J Neurosci ; 60(3): 4115-4127, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38378245

RESUMEN

Attention deficit hyperactivity disorder is one of the most prevalent neurodevelopmental disorders worldwide. Recent studies show that machine learning has great potential for the diagnosis of attention deficit hyperactivity disorder. The aim of the present article is to systematically review the scientific literature on machine learning studies for the diagnosis of attention deficit hyperactivity disorder, focusing on psychometric questionnaire tools. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were adopted. The review protocol was registered in the PROSPERO database. A search was conducted in three databases-Web of Science Core Collection, Scopus and Pubmed-with the aim of identifying studies that apply ML techniques to support the diagnosis of attention deficit hyperactivity disorder. A total of 17 empirical studies were found that met the established inclusion criteria. The results showed that machine learning can be used to increase the accuracy of attention deficit hyperactivity disorder diagnosis. Machine learning techniques are useful and effective strategies that can complement traditional diagnostics in patients with attention deficit hyperactivity disorder.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Aprendizaje Automático , Psicometría , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Humanos , Psicometría/métodos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA