Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 266: 110579, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32310120

RESUMEN

This study used a relatively long-term (350 d) continuous flow test to determine the bioturbation effect of a benthic macroinvertebrate (the snail Bellamya aeruginosa) on sediment internal phosphorus (P) pollution control by in-situ immobilisation using drinking water treatment residue (DWTR) as the inactivating agent. The results showed that DWTR substantially reduced P concentration in overlying water, had a limited effect on other overlying water properties, and tended to reduce nitrogen release from the sediment. Variations in overlying water properties induced by DWTR were generally not associated with snail activity or population density. However, the snails were found to promote DWTR burial and induce DWTR mixing within the sediment, indicating that bioturbation could change the distribution of P inactivating agents in sediment. The mobility of P was closely related to oxalate extractable aluminium, iron, and P (Alox, Feox, and Pox, respectively) in sediments at different depths. Typically, mobile P was stable at a relatively low level when the total content of Alox and Feox was >0.750 mmol g-1 or when the ratio of Pox to (Alox + Feox) was <0.05. Given these results, recommended practices include repeated dosing of the immobilising agents at intervals determined by the relationships among mobile P, Pox, Alox, and Feox in the sediment, especially for Al- and Fe-based agents such as DWTR. Overall, the effect of bioturbation on the stability of in-situ P immobilisation in sediment should be fully considered during long-term pollution control.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Eutrofización , Sedimentos Geológicos , Lagos , Fósforo , Pseudomonas aeruginosa , Caracoles
2.
Ecol Appl ; 26(5): 1517-1534, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27755758

RESUMEN

The effects of reducing nutrient inputs to lakes and reservoirs are often delayed by hysteresis resulting from internal phosphorus (P) loading from sediments. Consequently, controlling harmful algal blooms (HABs) in many eutrophic ecosystems requires additional management to improve water quality. We manipulated iron (Fe) concentrations in a hypereutrophic lake to determine if Fe amendment would suppress HABs by inhibiting P release from sediments. Our experiment consisted of 15 in situ mesocosms, 12 of which each received a different dose of Fe (ranging from 2 to 225 g/m2 ); the remaining three were unmanipulated to serve as controls. Iron amendment decreased P accumulation in porewaters and the flux of P from sediments, which significantly lowered P concentrations in the water column. Iron exerted significant dose-dependent negative effects on the biomass of phytoplankton and periphyton, and reduced the dominance of cyanobacteria. Even at the lowest doses, Fe appeared to reduce the toxicity of cyanobacterial blooms, as measured by concentrations of hepatotoxic microcystins. Overall, our findings highlight the potential for Fe treatment as an effective strategy for minimizing HABs in eutrophic lakes and reservoirs. More broadly, our study reinforces the importance of Fe in regulating the trophic state of freshwaters, and the sensitivity of certain ecosystems to changes in Fe supply. Finally, we hypothesize that decreases in natural Fe supplies to lakes associated with anthropogenic activities may worsen outbreaks of toxic cyanobacteria.


Asunto(s)
Cianobacterias/efectos de los fármacos , Eutrofización , Hierro/farmacología , Lagos , Cianobacterias/fisiología , Monitoreo del Ambiente , Microcistinas/química , Perifiton , Fósforo , Factores de Tiempo
3.
J Environ Manage ; 160: 193-200, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26156193

RESUMEN

Monitoring phosphate concentration is very important to prevent and control eutrophication in natural waters. In this study, cobalt-based microsensors were modified, characterized, and tested to monitor internal soluble phosphorous (SRP) loading in lakes with improved detection limits. The effectiveness of surface modification on the performance of a cobalt-based microelectrode was fully examined by determining detection limit, response time, selectivity, interference with ions (sulfate, nitrate, and nitrite) and dissolved oxygen (DO). To assess their performance, phosphate sensors were applied to sediment samples collected from Lake Erie. SRP loading from sediments was determined under different DO conditions. After increasing the phosphate sensing area and modifying the surface, phosphate microsensors showed an increased detection limit of up to 10(-8) M concentration of phosphate ion. The phosphate microsensor also showed its ability to measure sediment SRP profiling without disturbing sediment structure, and diffusion coefficients of phosphate in sediment could be determined under both oxic and anoxic conditions. Modified phosphate sensors showed improved sensitivity and could be applied to both water and sediment samples with high spatial resolution; however, signal interferences (especially with oxygen) required consideration during sample analysis. Overall, obtained results showed that phosphate microsensors can be an effective tool for measurement of phosphate in lake water and sediment samples for SRP monitoring.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Sedimentos Geológicos/química , Lagos , Fósforo/química , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos , Eutrofización , Humanos
4.
Glob Chang Biol ; 20(3): 811-23, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24038822

RESUMEN

The (Lower) Lake of Zurich provides an ideal system for studying the long-term impact of environmental change on deep-water hypoxia because of its sensitivity to climatic forcing, its history of eutrophication and subsequent oligotrophication, and the quality and length of its data set. Based on 39 years (1972-2010) of measured profiles of temperature, oxygen concentration and phosphorus (P) concentration, the potentially confounding effects of oligotrophication and climatic forcing on the occurrence and extent of deep-water hypoxia in the lake were investigated. The time-series of Nürnberg's hypoxic factor (HF) for the lake can be divided into three distinct segments: (i) a segment of consistently low HF from 1972 to the late-1980s climate regime shift (CRS); (ii) a transitional segment between the late-1980s CRS and approximately 2000 within which the HF was highly variable; and (iii) a segment of consistently high HF thereafter. The increase in hypoxia during the study period was not a consequence of a change in trophic status, as the lake underwent oligotrophication as a result of reduced external P loading during this time. Instead, wavelet analysis suggests that changes in the lake's mixing regime, initiated by the late-1980s CRS, ultimately led to a delayed but abrupt decrease in the deep-water oxygen concentration, resulting in a general expansion of the hypoxic zone in autumn. Even after detrending to remove long-term effects, the concentration of soluble reactive P in the bottom water of the lake was highly correlated with various measures of hypoxia, providing quantitative evidence supporting the probable effect of hypoxia on internal P loading. Such climate-induced, ecosystem-scale changes, which may result in undesirable effects such as a decline in water quality and a reduction in coldwater fish habitats, provide further evidence for the vulnerability of large temperate lakes to predicted increases in global air temperature.


Asunto(s)
Lagos/química , Oxígeno/análisis , Fósforo/análisis , Cambio Climático , Monitoreo del Ambiente , Fósforo/química , Solubilidad , Suiza
5.
Water Res ; 257: 121680, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692261

RESUMEN

Diversion input lakes usually have a low catchment area/lake area ratio and pulsing pollution input. Various pollutants might accumulate in the lake continuously owing to the concentration effect under high evaporation but low precipitation over the entire area, typically for sedimentary cyclic elements such as phosphorus (P). However, the detailed transportation, sedimentation, and internal release mechanisms of P in the diversion input lakes remain unclear. This study conducted a year-long investigation of the littoral wetlands and open water areas of the shallow Lake Hengshui in the semi-humid region of North China. Results revealed that the average total P concentrations in the water and surficial sediment reached as high as 0.202 mg L-1 and 878.21 mg kg-1 in summer. The high water P levels in the lake were mainly regulated by the high internal P loading during summer and autumn, with the internal P loading being approximately nine times the external P loading. The littoral wetland area serves as a higher sedimentation sink and release source of P than the open water area. The concentrated P was continuously transported to the littoral wetland area through detritus burial, coprecipitation, and deposition of suspended particles. The release of P was mainly controlled by the dissolution of redox-sensitive Fe-P and Org-P at high temperatures and organic matter mineralization in the sediment, accompanied by the potential release capacity of apatite P (Ca-P). Future management of eutrophication and P levels in similar diversion input lakes should pay more attention to the high internal P loading in the sediment and the differentiated sedimentation and release processes in the littoral wetland and open water areas.


Asunto(s)
Sedimentos Geológicos , Lagos , Fósforo , Humedales , Fósforo/análisis , China , Lagos/química , Sedimentos Geológicos/química , Monitoreo del Ambiente , Estaciones del Año , Contaminantes Químicos del Agua
6.
Sci Total Environ ; 953: 176012, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39236817

RESUMEN

Sediment nutrients can be mobilized to overlying water via internal loading, which can be important to aquatic productivity. Using data from 143 Canadian lakes, we show high (~2400-fold) variation of soluble reactive phosphorus (SRP) concentrations in surficial sediment porewater, with results suggesting internal phosphorus loading (IPL) is also likely to vary widely. Consistent with past work at smaller scales, we show that lake depth, pH, trophic status, and bulk sediment Al:P and Fe:P influence porewater SRP, and IPL. Median porewater SRP concentration in lakes with high Al:P (molar ratios >10) were 4.8-fold smaller than in lakes with lower Al:P. In lakes where bulk sedimentary Fe:P molar ratios were >10 porewater SRP was 3.9-fold lower than in lakes with lower Fe:P. High pH (>7.8), along with hyper-eutrophic lakes were associated with higher porewater SRP. Finally, shallow lakes (<4 m depth) had median porewater SRP concentration 6-fold higher than deep lakes (>9 m depth). Important regional differences emerged, linked to regional variation in pH, soils, lake depth and trophic status, and paralleling areas of poor water quality. For example, median porewater SRP in lakes from the Boreal Plains and Prairies ecozones (dominated by Chernozems/Mollisols) was 64-fold and 44-fold higher than in the Boreal Shield (dominated by Podzols/Spodosols) (respectively), although we note that IPL risk is likely important across many ecozones. Using national data, we found in-lake measurements (particularly pH, and salinity) showed strong capacity in predicting porewater SRP (explaining 60-72 % of the variance in the data). Importantly, watershed predictors showed good predictive power, explaining ~50 % of variance in porewater SRP using variables including soil types, and % agriculture. Porewater SRP can be predicted with reasonable accuracy using easily measured variables, as can estimates of internal phosphorus loading, suggesting that landscape limnology holds strong potential in helping to inform lake management by informing understanding of in-lake nutrient sources.

7.
Water Res ; 245: 120580, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708778

RESUMEN

The unprecedented global increase in the anthropogenic-derived nitrogen (N) input may have profound effects on phosphorus (P) dynamics and may potentially lead to enhanced eutrophication as demonstrated in short-term mesocosm experiments. However, the role of N-influenced P release is less well studied in large-scale ecosystems. To gain more insight into ecosystem effects, we conducted a five-year large-scale experiment in ten ponds (700-1000 m2 each) with two types of sediments and five targeted total N concentrations (TN) by adding NH4Cl fertilizer (0.5, 1, 5, 10, and 25 mg N L-1). The results showed that: (ⅰ) The sediment P release increased significantly when TN exceeded 10-25 mg N L-1. (ⅱ) The most pronounced sediment P release increase occurred in summer and from sediments rich in organic matter (OMSed). (ⅲ) TN, algal biomass, fish biomass, non-algal turbidity, sediment pH, and OMSed were the dominant factors explaining the sediment P release, as suggested by piecewise structural equation modeling. We propose several mechanisms that may have stimulated P release, i.e. high ammonium input causes a stoichiometric N:P imbalance and induce alkaline phosphatase production and dissolved P uptake by phytoplankton, leading to enhanced inorganic P diffusion gradient between sediment and water; higher pelagic fish production induced by the higher phytoplankton production may have led increased sediment P resuspension through disturbance; low oxygen level in the upper sediment caused by nitrification and organic decomposition of the settled phytoplankton and, finally, long-term N application-induced sediment acidification as a net effect of ammonium hydrolysis, nitrification, denitrification; The mechanisms revealed by this study shed new light on the complex processes underlying the N-stimulated sediment P release, with implications also for the strategies used for restoring eutrophicated lakes.


Asunto(s)
Compuestos de Amonio , Lagos , Animales , Lagos/química , Ecosistema , Fósforo/análisis , Sedimentos Geológicos , Eutrofización , Nitrógeno/análisis , China
8.
Water Res ; 243: 120327, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451125

RESUMEN

The importance of controlling internal phosphorus (P) pollution in lakes has been recognized by scientists, and the application of P-inactivating materials to immobilize sediment P is often considered. However, sediment resuspension, a typical physical process occurring in lakes, has been demonstrated to increase the uncertainty of immobilization. In this study, we explored the characteristics of P immobilization in the horizontal direction under the effects of resuspension using annular flume tests based on drinking water treatment residuals (DWTR). The results showed that resuspension caused the mobile P and bioavailable P to be heterogeneously distributed in sediment planes after DWTR addition, resulting in varying P immobilization efficiencies at different depths. In particular, the coefficient of variation was 14.2-24.5% for mobile P horizontally distributed in the planes, resulting in a range of mobile P decreasing efficiencies at 24.0-47.8%. Further analysis indicated that variations in horizontal distribution were typically due to the varied migration of particles of different sizes. Specifically, P immobilization in sediment planes at different depths was regulated by promoting the migration of <8 µm DWTR after relatively low-intensity disturbance (in surface 0-1 cm sediment). After relatively high-intensity disturbance (in the whole 0-3 cm sediment), immobilization in the horizontal direction was regulated by coupling the migration of >63 µm DWTR (to the bottom) with the mixing of <8 µm DWTR in the sediment plane at different depths. The varying horizontal distributions of total P, resulting from the migration of 16-32 µm sediment, could enhance the heterogeneities of the P immobilization. Thus, the particle size of materials and lake background conditions, for example, the hydrodynamic characteristics and P distributions in differently sized sediments, should be used as key bases to select or develop P-inactivating materials to design proper remediation strategies for controlling internal P pollution in lakes.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Eutrofización , Lagos
9.
Sci Total Environ ; 905: 167139, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37739074

RESUMEN

Road salt runoff from de-icing applications is increasingly impacting water quality around the globe. Excess salt (especially chloride) concentrations can negatively impact the biological, chemical, and physical properties of freshwater ecosystems. Though road salt pollution is a prevalent issue affecting many northern temperate lakes, there are few studies on how freshwater salinization interacts with other ecological stressors such as eutrophication. We investigated how chloride from road deicers influences water quality in an urban lake. We sampled a tributary and lake receiving large amounts of road salt runoff from a nearby highway in Grand Rapids, Michigan over a 20-month period. Chloride concentrations in the deepest part of the lake consistently exceeded the US EPA chloride chronic toxicity threshold of 230 mg/L, at times reaching up to 331 mg/L. These high chloride concentrations appear to be responsible for preventing part of the lake from complete mixing, and causing hypoxia in the deepest regions of the lake. Total phosphorus concentrations near the surface averaged 35 µg/L but exceeded 7500 µg/L in the deepest part of the lake, which occupies 3-5 % of total lake volume. Phosphorus release rates from the sediments were low and unlikely to be a current source of the high phosphorus concentrations. Rather, both phosphorus and chloride likely have been accumulating in the hypolimnion over a relatively long period of time. Lake management actions will require control of both internal and external phosphorus and chloride sources in the future. We recommend that phosphorus be addressed first to avoid the extremely high phosphorus concentrations from reaching the photic zone and stimulating algal blooms, which would occur if salt was removed first and the halocline broke down. Our findings and recommendations are applicable to other lakes facing similar issues.

10.
Water Res ; 235: 119824, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913811

RESUMEN

Aluminum salts are widely used to immobilize phosphorus (P) in lakes suffering from internal loading. However, longevity of treatments varies among lakes; some lakes eutrophy faster than others. We conducted biogeochemical investigations of sediments of a closed artificial Lake Barleber, Germany that was successfully remediated with aluminum sulfate in 1986. The lake became mesotrophic for almost 30 years; a rather rapid re-eutrophication took place in 2016 leading to massive cyanobacterial blooms. We quantified internal loading from sediment and analyzed two environmental factors that might have contributed to the sudden shift in trophic state. Increase in lake P concentration started in 2016, reaching 0.3 mg L-1, and remained elevated into the spring of 2018. Reducible P fraction in the sediment was 37 - 58% of total P, indicating a high potential for mobilization of benthic P during anoxia. Estimated P release from sediments for 2017 was approximately 600 kg for the whole lake. This is consistent with sediment incubation results; higher temperature (20°C) and anoxia contributed to release of P (27.9 ± 7.1 mg m-2 d-1, 0.94 ± 0.23 mmol m-2 d-1) to the lake, triggering re-eutrophication. Loss of aluminum P adsorption capacity together with anoxia and high water temperatures (organic matter mineralization) are major drivers of re-eutrophication. Accordingly, treated lakes at some time require a repeated aluminum treatment for sustaining acceptable water quality and we recommend regular sediment monitoring in treated lakes. This is crucial given the effects of climate warming on duration of stratification in lakes which may result in the need for treatment of many lakes.


Asunto(s)
Aluminio , Lagos , Humanos , Fósforo/análisis , Sedimentos Geológicos , Compuestos de Alumbre , Eutrofización , Hipoxia , Monitoreo del Ambiente
11.
Sci Total Environ ; 829: 154572, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35306066

RESUMEN

Sediment phosphorus (P) recycling is one of the key issues in lake water quality management. We studied sediment P mobility in Võrtsjärv, a large shallow lake in Estonia using both sorption experiments and long-term (1985-2020) monitoring data of the lake. Over the years studied, the lake has undergone a decline in external phosphorus loading (EL), while no improvement in phytoplankton indicators was observed. The results of the sorption experiments revealed that it may be successfully used as a tool to determine P forms involved in P retention, as up to 100% of the P from the water column was detected in sediments. Incubation of wet sediment is preferred to dry because of the sensitivity of organic P to desiccation. In the sediments of Võrtsjärv, the labile P (Lab-P) and iron bound (Fe-P) fractions are the major forms of the mobile pool that supply internal P load as sediment released P. The internal P load calculated from summer total P (TP) increases (ILin situ) in the water column was on average 42%, but could reach 240% of EL at extreme environmental conditions. ILin situ was correlated with the active area, which resembles the area involved in redox-related P release in polymictic lakes, and with the mean bottom shear stress in summer. ILin situ showed a similar decreasing pattern as the external P load over the years 1985-2020, and was likely driven by the decrease of the pool of releasable P. Similarly, the decreases in sediment loading by P retention in our P sorption experiment were associated with decreases in the concentration of the potentially mobile P forms (mainly Lab-P and Fe-P). These results show that changes in external P loading can successfully control internal P loading and are useful in water quality management of large lakes.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
12.
Water Res ; 224: 119067, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108397

RESUMEN

In shallow lakes, eutrophication leads to a shift of the macrophyte-dominated clear state towards an algae-dominated turbid state. Phosphorus (P) is a crucial element during this shift and is usually concentrated in the suspended particulate matter (SPM) in water. However, the dominant processes controlling internal P release in the algae- (ADA) and macrophyte-dominated (MDA) areas under the influence of P-concentrated SPM remains unclear. In this study, we conducted monthly field observations of P exchange across the sediment-water interface (SWI) with the deposition of SPM in the ADA and MDA of Lake Taihu. Results revealed that both algae- and macrophyte-originated SPM led to the depletion of oxygen across the SWI during summer and autumn. Redox-sensitive P (Fe-P) and organic P (Org-P) were the dominant mobile P fractions in both areas. High fluxes of P across the SWI were observed in both areas during the summer and autumn. However, the processes controlling P release were quite different. In MDA, P release was mostly controlled by a traditional Fe-P dissolution process influenced by the coupled cycling of iron, sulfur, and P. In the ADA, Org-P control was intensified with the deterioration of algal bloom status, accompanied with the dissolution of Fe-P. Evidence from the current study revealed that the dominant process controlling the internal P release might gradually shift from Fe-P to a coupled process of Fe-P and Org-P with the shift of the macrophyte- to an algae-dominated state in shallow eutrophic lakes. The differentiated processes in the MDA and ADA should be given more attention during future research and management of internal P loadings in eutrophic lakes.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Eutrofización , Sedimentos Geológicos , Hierro , Lagos , Oxígeno , Material Particulado/análisis , Fósforo/análisis , Azufre , Agua , Contaminantes Químicos del Agua/análisis
13.
Water Res ; 207: 117792, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717209

RESUMEN

The combination of a low dose of coagulant with a ballast that can inactive phosphorus (P) in lake sediment-a technique known as "flock and lock"-is one method for restoration of eutrophic lakes. The effectiveness of a drinking water treatment residual (DWTR) as a ballast in flock and lock was assessed using assays of eutrophic lake water from Thailand dominated by Microcystis aeruginosa cyanobacteria colonies by measuring changes in chlorophyll-a, pH, and zeta potential. P sorption isotherms were developed from long-term batch equilibrium experiments; desorption of nutrients and metals was assessed via leaching experiments; and morphological changes to cellular structure were assessed using scanning electron microscopy. Results showed that combining DWTR with a low dose of aluminum sulfate (0.6-4.0 mg Al/L) effectively sank 74-96% of Microcystis, with DWTR dose (50-400 mg/L), initial chlorophyll-a concentration (92-976 µg/L), pH (7.4-9.3), and alkalinity (99-108 ppm CaCO3) identified as factors significantly associated with sinking efficacy. P sorption capacity of the DWTR (7.12 mg/g) was significantly higher than a local soil (0.33 mg/g), enabling the DWTR to inactivate P in lake sediment. Desorption of Al, Fe, Ca and N from the DWTR was estimated to contribute to a marginal increase in concentrations of those compounds in the water column of a small shallow lake (1.2, 0.66, 53.4, and 0.07 µg/L, respectively) following a simulated application. Therefore, pre-treated DWTRs may be a viable alternative ballast in the flock and lock approach to lake restoration, supplementing or replacing modified local soils or lanthanum modified clays.


Asunto(s)
Cianobacterias , Agua Potable , Microcystis , Eutrofización , Lagos , Fósforo/análisis
14.
Water Res ; 188: 116525, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091803

RESUMEN

Lake Erie harmful algal blooms and hypoxia are two major environmental problems, and have severe impacts on human health, aquatic ecosystems, and the economy. However, little is known about internal loading of phosphorus (P) from sediments, which pose a challenge for assessing the efficacy of current conservation measures on the improvement of lake water quality. A modified Hedley's extraction procedure was employed to analyze representative sediment samples collected from the Lake Erie basin for assessing sedimentary P stock, potential availability for release into lake water, and internal P loading. Inorganic and organic P in the sediments were characterized by sequential extractions in H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, respectively. In the 0 - 10 cm sediment, total P stock was 172, 191, and 170 metric tons km-2 in the western, central, and eastern basins, respectively. Sedimentary P seems unlikely to contribute to internal P loading in the western basin, while in the eastern basin it can potentially contribute to an internal loading of 359 metric tons P yr-1. In the central basin, 41% of organic P, 15% of non-HCl extractable inorganic P, and 9.7% of residual P in the 0 - 10 cm sediment is potentially available for release into lake water; in the 10 - 20 cm sediment, organic P extracted by NaHCO3 and NaOH is also partially available. The central basin potentially contributes to internal P loading at a total amount of 10,599 metric tons yr-1. Internal P loading may not contribute to HABs in the western basin, but it can cause and maintain hypoxia in the central basin and delay the recovery of lake water quality for a lengthy time period in response to external P reduction measures.


Asunto(s)
Lagos , Fósforo , Ecosistema , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Humanos , Fósforo/análisis
15.
Huan Jing Ke Xue ; 41(4): 1700-1708, 2020 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-32608676

RESUMEN

Eutrophication of freshwater bodies has become a global environmental problem, and phosphorus (P) has been identified as one of the key limiting factors responsible for this eutrophication problem. Reducing internal P release is crucial to the control of the eutrophication of freshwater bodies besides reducing the input of external P. To control sedimentary P release, magnesium hydroxide[Mg(OH)2] was applied as a capping and amendment material in this study. The adsorption performance of phosphate on Mg(OH)2 was investigated in batch mode, and the effect of Mg(OH)2 capping and amendment on the mobilization of P in sediments was studied using sediment incubation experiments. Results showed that Mg(OH)2 exhibited good adsorption performance toward phosphate. The phosphate removal efficiency of Mg(OH)2 increased with increasing adsorbent dosage. The adsorption equilibrium data of phosphate on Mg(OH)2 could be better described by the Freundlich and Dubinin-Radushkevich isotherm models compared to the Langmuir isotherm model. Mg(OH)2 capping and addition both could effectively control the release of reactive soluble P (SRP) from sediments into the overlying water, resulting in a low concentration of SRP in the overlying water under Mg(OH)2 capping and amendment conditions. Mg(OH)2 capping and amendment both could reduce pore water SRP in the uppermost sediment (0-10 mm), which played a key role in the control of the release of SRP from sediments into the overlying water. The as-prepared Mg(OH)2 possessed a much higher phosphate adsorption ability than commercial Mg(OH)2, and the former also had a higher controlling efficiency of sedimentary P release than the latter. In summary, Mg(OH)2 is a promising capping and amendment material for the control of internal phosphorus release in freshwater bodies.

16.
Huan Jing Ke Xue ; 41(5): 2281-2291, 2020 May 08.
Artículo en Zh | MEDLINE | ID: mdl-32608846

RESUMEN

Understanding the effect of calcite and chlorapatite mixture (CA/ClAP) addition on the mobilization of phosphorus (P) in sediments is crucial to the application of CA/ClAP as an amendment material to control the release of P from sediments. To address this issue, batch experiments were conducted to investigate the removal performance of phosphate by CA/ClAP, and sediment incubation experiments were carried out to study the effect of CA/ClAP addition on the mobilization of P in sediments. The results showed that the removal ability of phosphate by CA/ClAP was much higher than those by calcite and chlorapatite, and the kinetics data of phosphate removal by CA/ClAP followed a pseudo-second-order kinetics model. Increasing calcite and chlorapatite dosages would be favorable for the removal of phosphate by CA/ClAP, and coexisting Ca2+ enhanced the phosphate removal. CA/ClAP addition not only reduced the concentration of soluble reactive P (SRP) in the overlying water, but also decreased the concentration of SRP in the pore water. The addition of CA/ClAP in sediments caused an increase in the content of P in the sediments, but the increased P mainly existed in the form of calcium-bound P (HCl-P), which was difficult to be re-released into the water column under anoxic and common pH (5-9) conditions. The reduction of SRP in the pore water after the addition of CA/ClAP played an important role in the prevention of sedimentary P liberation into the overlying water by the CA/ClAP amendment. The results of this work indicate that CA/ClAP can be used as an amendment material for interception of the release of P from sediments into overlying water.

17.
Huan Jing Ke Xue ; 41(1): 273-283, 2020 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-31854928

RESUMEN

We determine the efficiency and mechanism of Mg/Fe layered double hydroxides (Mg/Fe-LDH) addition for the control of phosphorus (P) release from sediments by studying the adsorption behavior and mechanism of phosphate from an aqueous solution on Mg/Fe-LDH. The impact of Mg/Fe-LDH addition on the mobilization of P in sediments as well as the adsorptive removal of phosphate by sediments is investigated, and the stabilization of P bound by Mg/Fe-LDH is also evaluated. Results showed that the kinetics data of phosphate adsorption onto Mg/Fe-LDH fitted better with the Elovich kinetics model than with the pseudo-first-order and pseudo-second-order kinetics models, and that the Freundlich and Dubinin-Radushkevich models were more suitable for describing the adsorption isotherm behavior of phosphate on Mg/Fe-LDH than the Langmuir model. Phosphate adsorption possessed a wide effective pH range of 4-10. Coexisting Ca2+ and Mg2+ enhanced phosphate adsorption onto Mg/Fe-LDH, while coexisting Na+, K+, and Cl- had negligible impacts on the phosphate adsorption. The presence of SO42- and HCO3- in aqueous solution inhibited the adsorption of phosphate on Mg/Fe-LDH. The phosphate adsorption mechanisms were deduced to be anion exchange, electrostatic attraction, ligand exchange and inner-sphere complex formation. The addition of Mg/Fe-LDH into sediments not only greatly reduced the concentration of reactive soluble P (SRP) in the overlying water, but also significantly decreased the level of SRP in the pore water. In addition, Mg/Fe-LDH addition also increased the adsorption capacity for the sediments, and the phosphate adsorption ability for the Mg/Fe-LDH-amended sediments increased with increased amendment dosage. Almost half of the phosphate bound by Mg/Fe-LDH existed in the form of relatively stable P, i.e., metal oxide-bound P (NaOH-rP), which was difficult to release back into the water column under normal pH and anoxic conditions. Nearly half of the phosphate bound by Mg/Fe-LDH existed in the form of easily released P, i.e., NH4Cl extractable P (NH4Cl-P) and redox-sensitive P (BD-P), which had a high risk of re-releasing into the water column. We conclude that it is very necessary for Mg/Fe-LDH to be recycled from the sediments after the application of Mg/Fe-LDH as an amendment to control sedimentary P liberation.

18.
Huan Jing Ke Xue ; 41(3): 1296-1307, 2020 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-32608631

RESUMEN

The use of calcite (CA) as an active capping material has high potential for controlling the release of phosphorus (P) from sediments, but its efficiency still needs to be enhanced. To address this issue, an iron-modified CA (Fe-CA) was prepared, the removal performance of phosphate from aqueous solution by Fe-CA was studied, and the efficiency of the use of Fe-CA as an active capping material to prevent the liberation of P from sediments was investigated. The results showed that Fe-CA exhibited much higher phosphate removal ability than CA. The phosphate removal efficiency of Fe-CA increased with an increase in the Fe-CA dosage. Increasing the initial phosphate concentration gave rise to an increase in the amount of phosphate removed by Fe-CA, and the maximum amount of phosphate removed by Fe-CZ reached 3.09 mg·g-1. Sediment capping with Fe-CA could effectively control the release of soluble reactive P (SRP) from the sediment into the overlying water, leading to a very low concentration of SRP in the overlying water. Additionally, the Fe-CA capping also resulted in the transformation of a small amount of redox-sensitive P (BD-P) and metal-oxide-bound P (NaOH-rP) in sediments to residual P (Res-P), leading to a slight increase in the stability of P in the sediment. The overwhelming majority (90.8%) of P bound by the Fe-CA capping layer existed in the form of NaOH-rP, calcium-bound P (HCl-P), and Res-P, which are relatively very stable. Furthermore, the percentage of bioavailable P (BAP) as a proportion of total extractable P in the P-bound Fe-CA capping layer was very low, and the bound P was re-released with difficulty into the water column for algae growth. Compared to CA capping, the efficiency for the control of sedimentary P release into the overlying water by Fe-CA capping was much higher, and the stability of P bound by the Fe-CA capping layer was also higher. The results of this work indicate that Fe-CA is a very promising active capping material for the interception of the release of P from sediments into the overlying water.

19.
Environ Pollut ; 264: 114809, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32559883

RESUMEN

The non-magnetic capping materials are difficult to be recycled from the water bodies after their application, leading to the increase in the cost of the sediment remediation. To address this issue, a capping material, i.e., magnetic lanthanum/iron-modified bentonite (M-LaFeBT) was prepared by loading lanthanum onto a magnetic iron-modified bentonite (M-FeBT) and used to control the internal phosphorus (P) loading in this study. To determine the capping efficiency and mechanism of M-LaFeBT, the impact of M-LaFeBT and M-FeBT capping on the mobilization of P in sediments was investigated, and the stabilization of P bound by the M-LaFeBT and M-FeBT capping layers was evaluated. Results showed that M-LaFeBT possessed good magnetic property with a saturated magnetization of 14.9 emu/g, and exhibited good phosphate adsorption ability with a maximum monolayer sorption capacity (QMAX) of 14.3 mg P/g at pH 7. Moreover, M-LaFeBT capping tremendously reduced the concentration of soluble reactive P (SR-P) in the overlying water (OL-water), and the reduction efficiencies were 94.7%-97.4%. Furthermore, M-LaFeBT capping significantly decreased the concentration of SR-P in the pore water and DGT (diffusive gradient in thin films)-labile P in the profile of OL-water and sediment. Additionally, most of P bound by the M-LaFeBT capping layer (approximately 77%) was stable under natural pH and reducing conditions. The phosphate adsorption ability for M-LaFeBT was much higher than that for M-FeBT, and the QMAX value for the former was 4.86 times higher than that for the latter. M-LaFeBT capping gave rise to a higher reduction of DGT-labile concentration in the profile of OL-water and sediment than M-FeBT capping. The P adsorbed by the M-LaFeBT capping layer was more stable than that by the M-FeBT capping layer. Results of this study demonstrate that M-LaFeBT is promising for utilization as an active capping material to intercept sedimentary P release into OL-water.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua/análisis , Bentonita , Sedimentos Geológicos , Hierro , Lagos , Lantano , Fenómenos Magnéticos
20.
Sci Total Environ ; 685: 806-817, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31238284

RESUMEN

Lake Lugano is one of several deep lakes in Switzerland that have not yet recovered from eutrophication after large reductions of external phosphorus (P) loadings. Persistent eutrophication has been attributed mainly to internal P loadings from sediments. To achieve the restoration goals, it is critically important to evaluate the sediment P availability and release risk in this lake. In this study, we combined sequential P extraction (four fractions) with enzyme hydrolysis to assess distribution characteristics of P forms and potential bioavailability of organic P in an anoxic sediment profile from the Ponte Tresa basin of Lake Lugano, southern Switzerland. Labile P forms, i.e. mostly redox-sensitive iron bound P and metal oxides bound P (Al/Fe-P), comprised ~70% of total P in the sediment profile (1959-2017 CE), suggesting a high potential for P release from the anoxic sediment. Potentially bioavailable organic P forms (determined by addition of substrate specific enzymes) were considerably higher in the surface sediments (top 5 cm), which is very likely to release P in the near future with early diagenesis. The net burial rates (NBR) of redox sensitive Fe-P fraction and total P in sediments both showed significant decreasing trends from 1959 to 2017 CE, when trophic levels of the lake increased from mesotrophic to hypertrophic status. We suggest that, in the Ponte Tresa basin, higher eutrophication conditions led to enhanced sediment P release (mainly from redox sensitive Fe-P fraction), thus reducing P-NBR in sediments. This study highlights the concern that in deep monomictic lakes, eutrophication restoration might be hindered by extensive internal P cycling and reduced capacity of sediment P-trapping.


Asunto(s)
Monitoreo del Ambiente , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Eutrofización , Lagos/química , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA