Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 36: 291-313, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32559387

RESUMEN

Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.


Asunto(s)
Plantas/metabolismo , Evolución Biológica , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Plantas/genética , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 119(49): e2212155119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442090

RESUMEN

Jasmonates are phytohormones that regulate defense and developmental processes in land plants. Despite the chemical diversity of jasmonate ligands in different plant lineages, they are all perceived by COI1/JAZ co-receptor complexes, in which the hormone acts as a molecular glue between the COI1 F-box and a JAZ repressor. It has been shown that COI1 determines ligand specificity based on the receptor crystal structure and the identification of a single COI1 residue, which is responsible for the evolutionary switch in ligand binding. In this work, we show that JAZ proteins contribute to ligand specificity together with COI1. We propose that specific features of JAZ proteins, which are conserved in bryophytes and lycophytes, enable perception of dn-OPDA ligands regardless the size of the COI1 binding pocket. In vascular plant lineages beyond lycophytes, JAZ evolved to limit binding to JA-Ile, thus impeding dn-OPDA recognition by COI1.


Asunto(s)
Oxilipinas , Reguladores del Crecimiento de las Plantas , Ligandos
3.
Plant Cell Environ ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350742

RESUMEN

Rhizospheric pH, an important environmental cue, severely impacts plant growth and fitness, therefore, has emerged as a major determinant of crop productivity. Despite numerous attempts, the key questions related to plants response against rhizospheric pH remains largely elusive. The present study provides a mechanistic framework for rhizospheric pH-mediated root growth inhibition (RGI). Utilizing various genetic resources combined with pharmacological agents and high-resolution confocal microscopy, the study provides direct evidence for the involvement of jasmonates and auxin in rhizospheric pH-mediated RGI. We show that auxin maxima at root tip is tightly regulated by the rhizospheric pH. In contrast, jasmonates (JAs) abundance inversely correlates with rhizospheric pH. Furthermore, JA-mediated regulation of auxin maxima through GRETCHEN HAGEN 3 (GH3) family genes explains the pattern of RGI observed over the range of rhizospheric pH. Our findings revealed auxin as the key regulator of RGI during severe pH conditions, while JAs antagonistically regulate auxin response against rhizospheric pH.

4.
J Exp Bot ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177779

RESUMEN

Despite the existence of over half million species of plant-eating insects, our planet remains predominantly green. In fact, susceptibility to herbivory is the exception, as plants are resistant to most insect species. This phenomenon is known as nonhost resistance (NHR), where every individual of a plant species is resistant to all variants of a pest or pathogen. While NHR represents the most common and durable outcome of the plant immune system, several aspects of this type of plant defence remains elusive, particularly in plant-insect interactions. In this review, we clarify the concepts of NHR in plant-insect interaction. We emphasize that NHR is a phenomenon arising as a consequence of effective plant defences providing invulnerability to most insect herbivores. This underscores that NHR is one of the main ecological features delimiting the range of plant-insect interactions on Earth. We further highlight the traits and molecular components of the plant immune system known to participate in NHR against insects. Finally, we discuss how NHR can be leveraged as a tool to develop pest resilient crops. Given the significant threat insects pose to global food security, research in plant NHR represents a crucial focal point with immense potential for ensuring food security worldwide.

5.
J Exp Bot ; 75(1): 180-203, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611210

RESUMEN

Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.


Asunto(s)
Ascomicetos , Hordeum , Ascomicetos/fisiología , Hordeum/metabolismo , Giberelinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hormonas/metabolismo , Ciclo Celular
6.
Biometals ; 37(4): 755-772, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38206521

RESUMEN

Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.


Asunto(s)
Cadmio , Ciclopentanos , Oxilipinas , Plantas , Transducción de Señal , Cadmio/toxicidad , Cadmio/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Oxilipinas/metabolismo , Transducción de Señal/efectos de los fármacos , Ciclopentanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
J Chem Ecol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900391

RESUMEN

Leaf-cutting ants (Formicidae; Atta spp., Acromyrmex spp.) cut off pieces of leaves and other plant tissue and feed it to their symbiotic fungi. As this foraging behavior poses an imminent threat to agriculture, leaf-cutting ants are considered as pests of huge ecologically and economically importance. Consequently, research on leaf-cutting ants focused on their foraging decisions and interactions with their cultivated symbiotic fungi, whereas their effect on the attacked plants, apart from the loss of plant tissue, remains largely unknown. In this study, we investigated the consequences of an attack by leaf-cutting ants and analyzed the plants' defense responses in comparison to chewing caterpillars and mechanical damage. We found that an attack by leaf-cutting ants induces the production of jasmonates in several host and non-host plant species (Arabidopsis thaliana, Vicia faba, Phaseolus lunatus, Tococa quadrialata). Additionally, we showed in the natural host plant lima bean (P. lunatus) that leaf-cutting ant damage immediately leads to the emission of typical herbivory-induced plant volatiles, including green leaf volatiles and terpenoids. Further data exploration revealed clear differences in the defense-related phytohormone profile in plant species of Neotropical and Eurasian origin. Taken together, we show that leaf-cutting ant infestation and their way of clipping the plants' tissues induce jasmonate and jasmonates-mediated responses and do not differ from those to mechanical injury or larval feeding.

8.
Plant Cell Rep ; 43(8): 206, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093416

RESUMEN

Plants cannot move, so they have evolved sophisticated strategies that integrate the external environmental cues and internal signaling networks for adaptation to dynamic circumstances. Cis-(+)-12-oxo-phytodienoic acid (OPDA) and 2,3-dinor-OPDA (dn-OPDA), the cyclopentenone-containing oxylipins, ubiquitously occur in the green lineage to orchestrate a series of growth and developmental processes as well as various stress and defense responses. OPDA/dn-OPDA are precursors of jasmonate (JA) biosynthesis in vascular plants. Dn-OPDA and its isomer also serve as bioactive JAs perceived by the coronatine insensitive 1/jasmonate ZIM-domain (COI1/JAZ) co-receptor complex in bryophytes and lycophytes. In addition, OPDA/dn-OPDA display signaling activities independent of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) and COI1 in both vascular and non-vascular plants. In this review, we discuss recent advances in the biosynthesis, metabolism, and signaling of OPDA/dn-OPDA, and provide an overview of the evolution of OPDA/dn-OPDA actions to obtain a deeper understanding of the pervasive role of OPDA/dn-OPDA in the plant life cycle.


Asunto(s)
Ciclopentanos , Ácidos Grasos Insaturados , Oxilipinas , Transducción de Señal , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Mar Drugs ; 22(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535456

RESUMEN

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Asunto(s)
Ciclopentanos , Glicerol/análogos & derivados , Glicerofosfatos , Oxilipinas , Rhodophyta , Algas Marinas , Galactosa , alfa-Galactosidasa , Galactanos , Glucosa , Uridina Difosfato
10.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256153

RESUMEN

Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.


Asunto(s)
Camellia sinensis , Oxilipinas , Ciclopentanos , Transducción de Señal ,
11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000596

RESUMEN

The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.


Asunto(s)
Proteínas Portadoras , Ciclopentanos , Oxilipinas , Pisum sativum , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas , Xilema , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Pisum sativum/metabolismo , Pisum sativum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Portadoras/metabolismo , Hojas de la Planta/metabolismo , Transporte Biológico , Reguladores del Crecimiento de las Plantas/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 49(15): 3998-4006, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307734

RESUMEN

When plants are subjected to mechanical wounding(MW)caused by insect feeding, extreme weather, and human factors, they rapidly initiate a series of response mechanisms at the transcriptional and metabolic levels, leading to changes in the content of phytohormone and secondary metabolites in plants. In this study, using the medicinal model plant Danshen(Salvia miltiorrhiza) as an example, the effect of MW on the metabolism of medicinal plants was evaluated. By virtue of qRT-PCR and LC-MS, the changes in the biosynthetic genes and contents of jasmonates(JAs) and tanshinones in response to leaf damage stimulation were detected to reveal the related patterns of transcription and metabolism in leaves and roots at different time points after MW treatment, thus exploring the response mechanism of Danshen to MW stress. The results showed that MW induction could transiently increase the expression of biosynthetic genes of Jas, with AOC and JAR beginning to increase and peaking at 2 h after induction, while AOS and OPR3 peaked at 4 h. Correspondingly, the content of OPDA, JA, and JA-Ile all peaked at 2 h. In the biosynthesis of tanshinones, the diterpene synthase genes CPS1 and KSL1 both peaked at 2 h, while the subsequent modification genes CYP450s all peaked at 4 h. The content of the four tanshinones showed a continuous increase trend within 8 h. This study provides a reference for revealing the research on secondary metabolite accumulation under MW stress and lays a foundation for further understanding the role of Jas in enhancing plant resistance, promoting the accumulation of active ingredients, and improving the quality of medicinal materials under MW stress.


Asunto(s)
Abietanos , Ciclopentanos , Oxilipinas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/química , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Medicamentos Herbarios Chinos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant J ; 110(4): 1082-1096, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247019

RESUMEN

Jasmonoyl-isoleucine (JA-Ile) is a key signaling molecule that activates jasmonate-regulated flower development and the wound stress response. For years, JASMONATE RESISTANT1 (JAR1) has been the sole jasmonoyl-amino acid synthetase known to conjugate jasmonic acid (JA) to isoleucine, and the source of persisting JA-Ile in jar1 knockout mutants has remained elusive until now. Here we demonstrate through recombinant enzyme assays and loss-of-function mutant analyses that AtGH3.10 functions as a JA-amido synthetase. Recombinant AtGH3.10 could conjugate JA to isoleucine, alanine, leucine, methionine, and valine. The JA-Ile accumulation in the gh3.10-2 jar1-11 double mutant was nearly eliminated in the leaves and flower buds while its catabolism derivative 12OH-JA-Ile was undetected in the flower buds and unwounded leaves. Residual levels of JA-Ile, JA-Ala, and JA-Val were nonetheless detected in gh3.10-2 jar1-11, suggesting the activities of similar promiscuous enzymes. Upon wounding, the accumulation of JA-Ile and 12OH-JA-Ile and the expression of JA-responsive genes OXOPHYTODIENOIC ACID REDUCTASE3 and JASMONATE ZIM-DOMAIN1 observed in WT, gh3.10-1, and jar1-11 leaves were effectively abolished in gh3.10-2 jar1-11. Additionally, an increased proportion of undeveloped siliques associated with retarded stamen development was observed in gh3.10-2 jar1-11. These findings conclusively show that AtGH3.10 contributes to JA-amino acid biosynthesis and functions partially redundantly with AtJAR1 in sustaining flower development and the wound stress response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , Ligasas/genética , Ligasas/metabolismo , Oxilipinas/metabolismo
14.
Plant J ; 112(3): 860-874, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134434

RESUMEN

In rice (Oryza sativa L.), crown roots (CRs) have many important roles in processes such as root system expansion, water and mineral uptake, and adaptation to environmental stresses. Phytohormones such as auxin, cytokinin, and ethylene are known to control CR initiation and development in rice. However, the role of jasmonic acid (JA) in CR development remained elusive. Here, we report that JA promotes CR development by regulating OsGER4, a rice Germin-like protein. Root phenotyping analysis revealed that exogenous JA treatment induced an increase in CR number in a concentration-dependent manner. A subsequent genome-wide association study and gene expression analyses pinpointed a strong association between the Germin-like protein OsGER4 and the increase in CR number under exogenous JA treatment. The ProGER4::GUS reporter line showed that OsGER4 is a hormone-responsive gene involved in various stress responses, mainly confined to epidermal and vascular tissues during CR primordia development and to vascular bundles of mature crown and lateral roots. Notable changes in OsGER4 expression patterns caused by the polar auxin transport inhibitor NPA support its connection to auxin signaling. Phenotyping experiments with OsGER4 knockout mutants confirmed that this gene is required for CR development under exogenous JA treatment. Overall, our results provide important insights into JA-mediated regulation of CR development in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Estudio de Asociación del Genoma Completo , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Plant Cell Physiol ; 64(7): 771-785, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098222

RESUMEN

Artemisinin, a sesquiterpene lactone obtained from Artemisia annua, is an essential therapeutic against malaria. YABBY family transcription factor AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double-bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, have not yet been elucidated. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (glandular trichome-specific WRKY1) and AaDBR2 (double-bond reductase 2). In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Toward the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1 and AaDBR2 promoters, respectively. In AaYABBY5 overexpression plants, the expression of GSW1 was found to be significantly increased when compared to that of AaYABBY5 antisense or control plants. In addition, AaGSW1 was identified as an upstream activator of AaYABBY5. Further, it was found that AaJAZ8, a transcriptional repressor of jasmonate signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and anti-AaJAZ8 in A. annua increased the activity of AaYABBY5 toward artemisinin biosynthesis. This current study provides the first indication of the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions, which are regulated through AaJAZ8. This knowledge presents AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Artemisininas/metabolismo
16.
Plant Biotechnol J ; 21(6): 1286-1300, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36952539

RESUMEN

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.


Asunto(s)
Hemípteros , Oryza , Animales , Glucanos/metabolismo , Oryza/genética , Oryza/metabolismo , Poaceae
17.
New Phytol ; 237(3): 807-822, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285401

RESUMEN

Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Infecciones por Nematodos , Tylenchoidea , Animales , Raíces de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/fisiología , Ácidos Indolacéticos/metabolismo , Infecciones por Nematodos/metabolismo , Enfermedades de las Plantas/parasitología
18.
New Phytol ; 237(6): 2360-2374, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36457296

RESUMEN

To establish persistent infections in host plants, herbivorous invaders, such as root-knot nematodes, must rely on effectors for suppressing damage-induced jasmonate-dependent host defenses. However, at present, the effector mechanisms targeting the biosynthesis of biologically active jasmonates to avoid adverse host responses are unknown. Using yeast two-hybrid, in planta co-immunoprecipitation, and mutant analyses, we identified 12-oxophytodienoate reductase 2 (OPR2) as an important host target of the stylet-secreted effector MiMSP32 of the root-knot nematode Meloidogyne incognita. MiMSP32 has no informative sequence similarities with other functionally annotated genes but was selected for the discovery of novel effector mechanisms based on evidence of positive, diversifying selection. OPR2 catalyzes the conversion of a derivative of 12-oxophytodienoate to jasmonic acid (JA) and operates parallel to 12-oxophytodienoate reductase 3 (OPR3), which controls the main pathway in the biosynthesis of jasmonates. We show that MiMSP32 targets OPR2 to promote parasitism of M. incognita in host plants independent of OPR3-mediated JA biosynthesis. Artificially manipulating the conversion of the 12-oxophytodienoate by OPRs increases susceptibility to multiple unrelated plant invaders. Our study is the first to shed light on a novel effector mechanism targeting this process to regulate the susceptibility of host plants.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Tylenchoidea , Animales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas/metabolismo , Transporte Biológico , Tylenchoidea/fisiología , Enfermedades de las Plantas
19.
Phytopathology ; 113(8): 1525-1536, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36935378

RESUMEN

Rhizoctonia solani is a necrotrophic, soilborne fungal pathogen associated with significant establishment losses in Brassica napus (oilseed rape; OSR). The anastomosis group (AG) 2-1 of R. solani is the most virulent to OSR, causing damping-off, root and hypocotyl rot, and seedling death. Resistance to R. solani AG2-1 in OSR has not been identified, and the regulation of OSR defense to its adapted pathogen, AG2-1, has not been investigated. In this work, we used confocal microscopy to visualize the progress of infection by sclerotia of AG2-1 on B. napus varieties with contrasting disease phenotypes. We defined their defense response using gene expression studies and functional analysis with Arabidopsis thaliana mutants. Our results showed existing variation in susceptibility to AG2-1 and plant growth between OSR varieties, and differential expression of genes of hormonal and defense pathways related to auxin, ethylene, jasmonic acid, abscisic acid, salicylic acid, and reactive oxygen species regulation. Auxin, abscisic acid signaling, and the MYC2 branch of jasmonate signaling contributed to the susceptibility to AG2-1, while induced systemic resistance was enhanced by NAPDH RBOHD, ethylene signaling, and the ERF/PDF branch of jasmonate signaling. These results pave the way for future research, which will lead to the development of Brassica crops that are more resistant to AG2-1 of R. solani and reduce dependence on chemical control options.

20.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983071

RESUMEN

Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.


Asunto(s)
Etilenos , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Etilenos/metabolismo , Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA