Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 21(8): 521-524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804146

RESUMEN

Plasmid-mediated colistin resistance is an emerging One Health challenge at the human-food-environment interface. In this study, 12 colistin-resistant Escherichia coli carrying mcr-1.1 gene were characterized using whole-genome sequencing. This is the first report from locally produced chicken meat in the United Arab Emirates. The characterized isolates harbored virulence-associated factors ranging from 4 to 17 genes per isolate. The multilocus sequence type 1011 was identified in 5 (41.6%) isolates. Six (50.0%) of the isolates harbored blaCTX-M-55. All of the E. coli isolates contained Incl2 plasmids. This study highlights for the first time chicken meat as a potential reservoir of mcr-1.1 carrying E. coli in the UAE. This study has implications for food safety and underscores the need for comprehensive surveillance strategies to monitor the spread of colistin resistance. Results presented in this short communication address knowledge gaps on the epidemiology of plasmid-mediated colistin resistance in the Middle East food production chain.


Asunto(s)
Antibacterianos , Pollos , Colistina , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Carne , Plásmidos , Animales , Colistina/farmacología , Emiratos Árabes Unidos/epidemiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Plásmidos/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Carne/microbiología , Proteínas de Escherichia coli/genética , Secuenciación Completa del Genoma , Genómica , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Humanos , Tipificación de Secuencias Multilocus , Factores de Virulencia/genética , Genoma Bacteriano
2.
Ann Clin Microbiol Antimicrob ; 22(1): 82, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689686

RESUMEN

BACKGROUND: Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS: Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS: Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum ß-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS: In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.


Asunto(s)
Colistina , Klebsiella pneumoniae , Humanos , Colistina/farmacología , Egipto , Klebsiella pneumoniae/genética , Genómica , Unidades de Cuidados Intensivos
3.
Artículo en Inglés | MEDLINE | ID: mdl-33820767

RESUMEN

The plasmid-mediated tet(X7) conferring high-level tigecycline resistance was identified in five mcr-1.1-positive Escherichia coli strains (ST10 [n = 3] and ST155 [n = 2]) isolated from chickens in Egypt. Two fosfomycin-resistant fosA4-carrying IncFII plasmids (∼79 kb in size) were detected. Transposase ISCR3 (IS91 family) is syntenic with tet(X7) in all isolates, suggesting its role in the mobilization of tet(X7). To our knowledge, this is the first global report of ST4-IncHI2 plasmids cocarrying tet(X7) and mcr-1.1 from chickens.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Fosfomicina , Animales , Antibacterianos/farmacología , Pollos , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Egipto , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfomicina/farmacología , Plásmidos/genética , Tigeciclina
4.
Foodborne Pathog Dis ; 17(10): 597-601, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32077761

RESUMEN

An Escherichia coli strain isolated from the feces of swine at a pork slaughterhouse in Henan province China was found to possess two colistin-resistance genes, mcr-1 and mcr-3, plus 16 additional resistance genes. Genes mcr-1.1 and mcr-3.1 were identified on IncHI2 and IncX1 type plasmids, respectively. Transconjugants (containing mcr-3, mcr-1&mcr-3) were obtained that were 64- and 512-fold higher than the minimum inhibitory concentration of colistin on the recipient bacteria (E. coli C600), respectively. The IncX1 plasmid containing mcr-3.1 displayed a very specific structure compared with previous mcr-3. Variable and stable regions were similar across different plasmids, multiple insertion sequences and transposases.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Animales , Antibacterianos/metabolismo , China , Colistina/farmacología , ADN Bacteriano , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Heces/microbiología , Secuencias Repetitivas Esparcidas , Pruebas de Sensibilidad Microbiana , Plásmidos , Porcinos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
5.
Microbiol Spectr ; : e0075124, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166856

RESUMEN

The rate of polymyxin-resistant Enterobacteriaceae, as well as human and animal infections caused by them, is increasing worldwide, posing a high epidemiological threat since colistin represents a last-resort antibiotic to treat complicated infections. The study of environmental niches, in particular, aquatic ecosystems in terms of genome analysis of inhabiting antimicrobial-resistant (AMR) microorganisms as reservoirs of acquired resistance determinants (AMR genes), represents a specific concern from a One Health approach. Here, we present a phenotypic AMR analysis and molecular characterization of Escherichia coli isolate found in municipal drinking water after an accident in the water supply system of a residential building in Armenia in 2021. CrieF1144 E. coli isolate was resistant to ampicillin, ampicillin/sulbactam, cefuroxime, ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, colistin, and tigecycline, whereas whole genome sequencing (WGS) revealed blaTEM-1B, tet(A), and a combination of dfrA14 with sul1 resistance determinants, which corresponds well with phenotypic resistance above. Moreover, the multidrug-resistant isolate studied harbored mcr-1.1 gene on a conjugative 251 Kb IncHI2 plasmid, whose structure was determined using hybrid short- and long-reads assembly. CrieF1141_p1 plasmid carried all antimicrobial resistance genes revealed in the isolate and did not harbor any virulence determinants, so it could contribute to the spread of AMR genes in the bacterial population. Two copies of ISApl1 transposase-encoding element, which is likely to mediate mcr-1.1 gene mobilization, were revealed surrounding this gene in a plasmid. IMPORTANCE: Evolutionary patterns of Escherichia coli show that they usually develop into highly pathogenic forms by acquiring fitness advantages such as antimicrobial resistance (AMR) and various virulence factors through horizontal gene transfer mediated by mobile elements. This has led to high prevalence of multidrug-resistant (MDR) strains, which highlights the relevancy of enhanced surveillance to monitor and prevent transmission of the MDR bacteria to human and animal populations. However, the limited number of reports regarding the whole genome sequencing (WGS) investigation of MDR E. coli strains isolated from drinking water and harboring mcr genes hampers the adoption of a comprehensive approach to address the relationship between environmental E. coli populations and human and veterinary infections. Our results highlight the relevance of analyzing the environment, especially water, as a part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance within the One Health concept.

6.
J Infect Public Health ; 16(11): 1813-1820, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741016

RESUMEN

BACKGROUND: The coexistence of carbapenem resistance genes and mcr-1.1 in Enterobacterales has been an urgent and persistent threat to global public health. In this study, we isolated a clinical NB4833, an Escherichia coli isolate that co-carries mcr-1.1 and blaNDM-13. OBJECTIVES: This study aimed to isolate a clinical NB4833, an Escherichia coli isolate that co-carries mcr-1.1 and blaNDM-13 and investigated the phenotypic and genotypic characteristics of plasmids harbored by E. coli isolate NB4833. METHODS: Antimicrobial susceptibility testing and conjugation assay were performed on E. coli isolate NB4833. Stability of the plasmid and growth rate determination were used to characterize the plasmids harboring mcr-1.1 and blaNDM-13. In addition, the genetic characteristics of the plasmids were analyzed based on whole-genome sequencing of the strain and comparative genetic analysis with related plasmids. RESULTS: Whole-genome sequencing showed that the isolate carried multiple resistance genes and possessed phenotypes indicative of all antibiotic resistance except tigecycline. And the mcr-1.1- and blaNDM-13-harbouring plasmids showed relatively high similarity to the related plasmids. The pNB4833-NDM-13 plasmid was capable of trans conjugation with an efficiency of 1.04 × 10-2 in a filter mating experiment and the transconjugant J53/ pNB4833-NDM-13 was able to be stably inherited after 10 days of passage. CONCLUSIONS: To our knowledge, this is the first report of the coexistence of the IncI2 plasmid carrying mcr-1.1 and a blaNDM-13-carrying integrated IncFIB/IncFII plasmid in an ST297 clinical E. coli isolate. In addition, we investigated a novel plasmid carrying blaNDM-13. Our study expands the diversity of plasmids carrying blaNDM-13, which exhibits epidemic importance in bacterial resistance. Therefore, there are important measures that should be taken to prevent the spread of these plasmids.

7.
Microb Drug Resist ; 29(3): 78-84, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36930202

RESUMEN

Antimicrobial resistance encoded by mobile colistin resistance (mcr) genes is a global and emergent threat. In this study, we report the occurrence of two different populations of colistin-resistant Escherichia coli harboring mcr-1 and mcr-4 variants in the intestinal microbiome of a healthy pig. Following antimicrobial susceptibility determination, the presence of mcr genes in two E. coli strains, isolated according to different selective microbiological procedures, was screened by PCR. Whole-genome sequencing confirmed that both strains were multidrug-resistant; INIAV_002EC was an AmpC producer carrying blaCMY-2, blaTEM-1B, qnrS1, mcr-1.1 genes, and INIAV_001EC carrying blaTEM-1A, tetB, and mcr-4.1 genes, along with mutations in quinolone resistance-determining regions. In addition, both strains harbored sul3, dfrA, and aadA1 determinants. Further genome analysis revealed different plasmid replicons associated with the mcr genes, IncX4 associated with mcr-1.1, and ColE10 with mcr-4.1. In addition, other replicons, including IncFIA, IncI1-Iγ, IncX1, IncY, in INIAV_002EC, and IncX1, IncI1, and p0111, in INIAV_001EC, were identified. Furthermore, both strains belonged to ST215 serotype O68:H12 and ST156 serotype O25:H28, respectively. This finding highlights the pig gut flora as a potential reservoir of mobile colistin resistance genes and reports the presence of the mcr-4.1 gene found for the first time in Portugal.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Porcinos , Escherichia coli , Colistina/farmacología , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Portugal , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Farmacorresistencia Bacteriana/genética
8.
Comp Immunol Microbiol Infect Dis ; 100: 102040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37619490

RESUMEN

Little is known about the prevalence of antimicrobial-resistant bacteria and pathogenic Escherichia coli in crows (carrion and jungle crows). We studied the phylogeny, virulence and antimicrobial resistance gene profiles of crow E. coli isolates to investigate their zoonotic potential and molecular epidemiology. During the winter of 2021-2022, 34 putative E. coli isolates were recovered from 27 of the 65 fresh fecal samples collected in urban areas. Three strains of the B1-O88:H8-ST446-fimH54 lineage, classified as extraintestinal pathogenic E. coli (ExPEC) and necrotoxigenic E. coli type 2, were colistin-resistant and harbored mcr-1.1-carrying IncI2 plasmids. The blaCTX-M-55 was identified in a multidrug-resistant B1-O non-typeable:H23-ST224-fimH39 strain. In phylogroup B2, two lineages of O6:H1-ST73-fimH30 and O6:H5-ST83-fimH21 were classified as ExPEC, uropathogenic E. coli, and necrotoxigenic E. coli type 1 (O6:H5-ST83-fimH21), and contained several virulence genes associated with avian pathogenic E. coli. Noteworthy is that three isolates, identified as E. coli by MALDI-TOF MS, were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III) based on ANI and dDDH analyses. Our results provide the first evidence of these new species in crows. E. marmotae and E. ruysiae isolates in this study were classified as ExPEC and contained the enteroaggregative E. coli heat-stable toxin 1 gene. In addition, these two E. marmotae isolates displayed a close genetic relationship with human isolates associated with septicemia. This study provides the first insights into the prevalence and zoonotic significance of Escherichia spp. in urban crows in Japan, posing a significant risk for their transmission to humans.


Asunto(s)
Cuervos , Escherichia coli , Animales , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Japón/epidemiología , Farmacorresistencia Bacteriana/genética
9.
Emerg Microbes Infect ; 12(2): 2278899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37929689

RESUMEN

Exchange of antimicrobial resistance genes via mobile genetic elements occur in the gut which can be transferred from mother to neonate during birth. This study is the first to analyse transmissible colistin resistance gene, mcr, in pregnant mothers and neonates. Samples were collected from pregnant mothers (rectal) and septicaemic neonates (rectal and blood) and analysed for the presence of mcr, its transmissibility, genome diversity, and exchange of mcr between isolates within an individual and across different individuals (not necessarily mother-baby pairs). mcr-1.1 was detected in rectal samples of pregnant mothers (n = 10, 0.9%), but not in neonates. All mcr-positive mothers gave birth to healthy neonates from whom rectal specimen were not collected. Hence, the transmission of mcr between these mother-neonate pairs could not be studied. mcr-1.1 was noted only in Escherichia coli (phylogroup A & B1), and carried few resistance and virulence genes. Isolates belonged to diverse sequence types (n = 11) with two novel STs (ST12452, ST12455). mcr-1.1 was borne on conjugative IncHI2 bracketed between ISApl1 on Tn6630, and the plasmids exhibited similarities in sequences across the study isolates. Phylogenetic comparison showed that study isolates were related to mcr-positive isolates of animal origin from Southeast Asian countries. Spread of mcr-1.1 within this study occurred either via similar mcr-positive clones or similar mcr-bearing plasmids in mothers. Though this study could not build evidence for mother-baby transmission but the presence of such genes in the maternal specimen may enhance the chances of transmission to neonates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Animales , Recién Nacido , Femenino , Humanos , Embarazo , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Filogenia , Madres , Colistina , Plásmidos/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
10.
J Glob Antimicrob Resist ; 32: 50-57, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572149

RESUMEN

OBJECTIVES: Global spread of mobilized colistin resistance gene (mcr)-carrying Escherichia coli poses serious threats to public health. This study aimed to provide insights into different threats posed by two major mcr variants: mcr-1.1 and mcr-3.1. METHODS: Genetic backgrounds and characteristics of mobile genetic elements carrying mcr-1.1 or mcr-3.1 in 74 (mcr)-carrying E. coli isolated from swine farms were analysed, and comparative genomic analysis was performed with the public sequence database. RESULTS: The mcr-1.1 showed high horizontal transferability (6.30 logCFU/ml). Genetic background of mcr-1.1, including genetic cassette/plasmid, was transferred without insertion sequences (ISs) and/or multi-drug resistance (MDR) and highly shared across strains. The major mcr-1.1-cassette was "mcr-1.1-pap2", mainly encoded in IncI2 and IncX4. Mcr-3.1 exhibited relatively lower conjugation frequency (0.97 logCFU/ml). The mcr-3.1-cassette was flanked by IS26 and was highly variable across strains because of the insertion, deletion, or truncation of IS6100, IS4321, or IS5075. Near the mcr-3.1 cassette, MDR regions consisting of antimicrobial/heavy metal resistance genes were identified, which varied across strains. From the MCR3-E13 strain, a mcr-3.1-carrying IncHI2-fragment was integrated into the bacterial chromosome via IS26-mediated co-integration. To our knowledge, this was the first study to describe that a mcr-3.1-carrying plasmid could be inserted into the bacterial chromosome. CONCLUSIONS: Based on high horizontal transferability, mcr-1.1 could play a major role on colistin resistance propagation. On the other hand, mcr-3.1 could be transmitted with MDR and have dual pathways mediated by plasmid transfer (horizontal transmission) and chromosomal insertion (vertical transmission), enabling it to proliferate stably despite its lower horizontal transferability.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Animales , Porcinos , Colistina/farmacología , Escherichia coli , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Genómica
11.
Infect Drug Resist ; 15: 7227-7234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533252

RESUMEN

Purpose: The objective of this study was to elucidate the characteristics and mechanism of formation of the fusion plasmid pHNSHP24 carrying mcr-1.1. Materials and Methods: mcr-1.1-bearing Escherichia coli SHP24 and the corresponding transconjugant were subjected to whole-genome sequencing (WGS) combining the Illumina and MinION platforms to obtain the complete sequences of the fusion plasmid and its original plasmids. Results: Complete sequence analysis and S1 nuclease-pulsed field gel electrophoresis (S1-PFGE) results indicated that E. coli SHP24 carried four plasmids: mcr-1.1-harboring phage-like plasmid pHNSHP24-3, F53:A-:B- plasmid pHNSHP24-4, pHNSHP24-1, and pHNSHP24-2. However, the plasmid pHNSHP24 carrying mcr-1.1 presents in the transconjugant differed from the four plasmids in the donor strain SHP24. Further analysis showed that pHNSHP24 may be the fusion product of pHNSHP24-3 and pHNSHP24-4 and is formed through a replicative transposition mechanism mediated by IS26 in E. coli SHP24. Conclusion: This study is the first to report the fusion of an mcr-1.1-harboring phage-like pO111 plasmid and an F53:A-:B- plasmid mediated by IS26. Our findings revealed the role of phage-like and fusion plasmids in the dissemination of mcr-1.1.

12.
J Food Prot ; 85(2): 213-219, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648627

RESUMEN

ABSTRACT: Salmonella, a major foodborne pathogen, causes severe gastrointestinal disease in people and animals worldwide. Plasmid-borne mcr-1, which confers colistin resistance in Salmonella, has significant epidemiological interest for public health safety. Here, we report the first evidence of mcr-1-mediated colistin resistance in one multidrug-resistant strain, 16062, from 355 Salmonella isolates collected for Jiaxing foodborne pathogen monitoring in Zhejiang Province from 2015 to 2019. In addition to colistin, 16062 displayed multidrug resistance to various antimicrobials (ß-lactams, quinolone, sulfonamide, florfenicol, ampicillin, streptomycin, nalidixic acid, aminoglycoside, and trimethoprim-sulfamethoxazole). The mcr-1-carrying IncX4 plasmid (p16062-MCR) in this study shares a conserved structure with other mcr-IncX4 plasmids. We found that other antimicrobial-resistance genes (aac(6')-Ib-cr, aadA1, aadA2, aph(3')-Ia, oqxA, oqxB, sul1, and cmlA1) are located on p16062-cmlA, an atypical IncHI2 plasmid, in isolate 16062. This is the first identification of transferable colistin resistance in a foodborne Salmonella isolate collected in Jiaxing City, the 5-year monitoring of which revealed limited dissemination. By determining the genetic features of the plasmid vehicle, the characteristics of transferable mcr genes circulating in isolates from Jiaxing are now clearer.


Asunto(s)
Colistina , Farmacorresistencia Bacteriana , Animales , Antibacterianos/farmacología , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos , Salmonella
13.
J Infect Public Health ; 15(12): 1363-1369, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334462

RESUMEN

BACKGROUND: Co-harbouring of carbapenem and colistin resistance genes in multidrug-resistant Enterobacterales strains poses a serious public health problem. In this study, an MCR-1.1 and NDM-5 coproducing Escherichia coli strain named EC6563 was isolated and characterized. OBJECTIVES: This study aimed to characterize a clinical carbapenem-resistant E. coli isolate which co-harbours mcr-1.1 and blaNDM-5 on separate plasmids, and explored the phenotypic and genotypic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids. METHODS: E. coli isolate EC6563 was subjected to antimicrobial susceptibility testing, conjugation assay, stability of the plasmid and growth rate determination. In addition, the whole genome sequence of this strain was obtained and the genetic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids were analyzed. RESULTS: Carbapenem-resistant E. coli isolate EC6563 was resistant to all the tested antibiotics except tigecycline. Bioinformatic analysis confirmed that the IncHI2 plasmid carrying mcr-1.1 was highly similar to the previously reported mcr-1.1-harbouring plasmid pGDP37-4, and carried multiple drug resistance genes and the IncI1-I plasmid carrying blaNDM-5 had low similarity to the published blaNDM-5-carrying IncI1-I plasmid pEC-16-10-NDM-5. The pEC6563-NDM5 plasmid was capable of conjugation with an efficiency of 1.34 × 10-2 in a filter mating experiment. The transconjugant J53/pEC6563-NDM5 was able to be stably inherited after 12 days of passage. CONCLUSIONS: To the best of our knowledge, this is the first time that an IncHI2 plasmid carrying mcr-1.1 and an IncI1-I plasmid carrying blaNDM-5 is found to coexist in an E. coli isolate. Our research expands the known diversity of plasmids in NDM-5-producing Enterobacterales strains. Meanwhile, effective measures should be taken to prevent the spread of these plasmids.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Antibacterianos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Carbapenémicos/farmacología , China , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
14.
Front Microbiol ; 13: 873856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602044

RESUMEN

Global spread of Escherichia coli strains carrying the mobilized colistin resistance gene mcr-1.1 (MCR1-EC) poses serious threats to public health. Colistin has been generally prescribed for swine colibacillosis, having made swine farms as major reservoirs of MCR1-EC. The present study aimed to understand characteristic differences of MCR1-EC, including prevalence, antimicrobial resistance, and virulence, according to swine production stages. In addition, genetic relatedness was evaluated between MCR1-EC isolated from this study as well as pig-, human-, and chicken-derived strains published in the National Center for Biotechnology Information (NCBI), based on the multi-locus sequence types (MLSTs) and whole-genome sequences (WGS). Individual fecal samples (n = 331) were collected from asymptomatic weaning-piglets, growers, finishers, and sows from 10 farrow-to-finishing farms in South Korea between 2017 and 2019. The weighted prevalence of MCR1-EC was 11.6% (95% CI: 8.9%-15.0%, 55/331), with the highest prevalence at weaning stage. The 96.2% of MCR1-EC showed multi-drug resistance. Notably, weaning stage-derived MCR1-EC showed higher resistance rates (e.g., against extended-spectrum ß-lactams or quinolones) than those from other stages. MCR1-EC with virulence advantages (e.g., intestinal/extraintestinal pathogenic E. coli or robust biofilm formation) were identified from all pig stages, accounting for nearly half of the total strains. WGS-based in-depth characterization showed that intestinal pathogenic MCR1-EC harbored multi-drug resistance and multiple virulence factors, which were highly shared between strains isolated from pigs of different stages. The clonal distribution of MCR1-EC was shared within swine farms but rarely across farms. The major clonal type of MCR1-EC from swine farms and NCBI database was ST10-A. Core genomes of MCR1-EC isolated from individuals within closed environments (same farms or human hospitals) were highly shared (genetic distance < 0.01), suggesting a high probability of clonal expansion of MCR1-EC within closed environments such as livestock husbandry. To the best of our knowledge, this is the first study to analyze the differences in the characteristics and clonal distribution of MCR1-EC according to production stages in swine farms, an important reservoir of MCR1-EC. Our results highlight the need to establish MCR1-EC control plans in swine farms based on an in-depth understanding of MCR1-EC characteristics according to swine production stages, focusing especially on the weaning stages.

15.
Front Microbiol ; 12: 547020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956105

RESUMEN

Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a "last-resort" antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains. Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains. Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene. Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an "epidemic" plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.

16.
Infect Drug Resist ; 14: 249-257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33531821

RESUMEN

BACKGROUND: The most common procedure of rhinoplasty is the implantation of a synthetic prosthesis. However, the complications, especially postoperative infection, could lead the suboptimal aesthetic outcome, economic losses and health threats. There is currently little literature providing an incidence of rhinoplasty infection and microbiological and antimicrobial resistance situations. METHODS: Therefore, we performed a retrospective observational study which included 173 patients who received a rhinoplasty from 1 January 2015, to 31 December 2019, in the department of plastic surgery of a tertiary hospital in Guangzhou, China. The samples from the infection site were collected and performed the bacterial culture. The antimicrobial susceptibility testing was performed by VITEK and minimum inhibition concentration testing. The whole-genome sequencing was performed by Illumina Hiseq4000 platform. RESULTS: We found that eight (4.6%) patients were infected by S. aureus (6), E. raffinosus (1) and E. coli (1), of which are susceptible to most antimicrobials. Remarkably, E. coli RS1231 was resistant to colistin and polymyxin B which conferred by mcr-1.1 locating on an IncI2 plasmid with 59,170-bp sequence length. Through sequence comparison, we speculate that the pRS1231S-MCR-1 was derived from animal sources. Besides, E. coli RS1231 belongs to ST131 O25:H4-fimH22 pandemic subclone and phylogroup B2, which can induce a broad variety of infections. CONCLUSION: Our study provided a rhinoplasty infection incidence, microbiological and antimicrobial resistance prevalence data, and revealed, to our knowledge, the first case of postoperative infection of rhinoplasty by mcr-1.1-positive, highly susceptible, and remarkably virulent E. coli isolate.

17.
Front Microbiol ; 11: 1954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983006

RESUMEN

This study was performed to investigate the genotypic causes of colistin resistance in 18 colistin-resistant Klebsiella pneumoniae (n = 13), Escherichia coli (n = 3) and Pseudomonas aeruginosa (n = 2) isolates from patients at the Hamad General Hospital, Qatar. MIC testing for colistin was performed using Phoenix (BD Biosciences, Heidelberg, Germany) and then verified with SensiTest Colistin (Liofilchem, Zona Ind. le, Italy). Strains determined to be resistant (MIC > 4-16 µg/mL) were then whole-genome sequenced (MiSeq, Illumina, Inc.). Sequences were processed and analysed using BacPipe v1.2.6, a bacterial whole genome sequencing analysis pipeline. Known chromosomal modifications were determined using CLC Genomics Workbench v.9.5.3 (CLCbio, Denmark). Two K. pneumoniae isolates (KPN-15 and KPN-19) harboured mcr-8.1 on the IncFII(K) plasmids, pqKPN-15 and pqKPN-19, and belonged to ST383 and ST716, respectively. One E. coli isolate harboured mcr-1.1 on the IncI2 plasmid pEC-12. The other 15 isolates harboured known chromosomal mutations linked to colistin resistance in the PhoPQ two-component system. Also, three K. pneumoniae strains (KPN-9, KPN-10 and KPN-15) showed disruptions due to IS elements in mgrB. To our knowledge, this marks the first description of mcr-8.1 in K. pneumoniae of human origin in Qatar. Currently, more research is necessary to trace the source of mcr-8.1 and its variants in humans in this region.

18.
Front Microbiol ; 11: 387, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265859

RESUMEN

Porcine Escherichia coli ST131 isolates are scarcely documented. Here, whole genome sequencing and core genome (CG) and plasmidome analysis of seven isolates collected from diarrheic piglets and four from pork meat were performed. All of the 11 ST131 isolates belonged to serotype O25b:H4 and clade B and showed fimH22 allele or mutational derivatives. The 11 porcine isolates possessed virulence traits that classified the isolates as avian pathogenic, uropathogenic, and extraintestinal pathogenic E. coli-like (APEC-, UPEC-, and ExPEC-like) and constituted virotype D. The CG was performed for all porcine isolates in addition to 73 ST131 reference isolates from different origins. Within clade B, the CG showed nine subclusters, allowing us to describe five new subclades (B6, B6-like, B7, B8, and B9). There was an association between subclade B6, PST43, virotype D2, and food origin, whereas subclade B7 included PST9 isolates with virotype D5 from diarrheic piglets (p = 0.007). The distance between human and porcine isolates from subclades B6 and B7 had an average of 20 and 15 SNP/Mb, respectively. [F2:A-:B1]-IncF, ColE1-like, and IncX plasmids were the most prevalent. Besides, IncF plasmids harbored a ColV region frequent among APEC isolates. Antimicrobial resistance genes conferring resistance to penicillin, tetracycline, quinolones, and colistin were the most common. The mcr-1.1 gene was detected in 5 of 11 porcine isolates, integrated into the chromosome of one isolate and into plasmids in the remainder isolates (two MOB H 11/IncHI2-ST4, one MOB P 3/IncX4, and one MOB F 12/IncF [F2:A-:B1] supposedly cointegrated with an IncHI2). The surrounding environments of the mcr-1 cassette showed variability. However, there were conserved structures within the same plasmid family. In conclusion, CG analysis defined five new subclades. The ST131 porcine isolates belonged to new subclades B6 and B7. Moreover, porcine and clinical human isolates were strongly related. The 11 porcine ST131 isolates harbored a wide variety of plasmids, virulence, and resistance genes. Furthermore, epidemic plasmids IncX4 and IncHI2 are responsible for the acquisition of mcr-1.1 gene. We hypothesize that the APEC-IncF plasmid acquired the mcr-1.1 gene via cointegrating an IncHI2 plasmid, which is worrying due to combination of virulence and resistance attributes in a single mobile genetic element.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA