Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325379

RESUMEN

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Asunto(s)
Receptores Acoplados a Proteínas G , Ácido Succínico , Ratones , Ratas , Animales , Humanos , Ácido Succínico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Succinatos/metabolismo , Estrés Fisiológico
2.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311178

RESUMEN

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Asunto(s)
Receptores AMPA , Humanos , Células HEK293 , Ligandos , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Receptores AMPA/genética , Receptores AMPA/metabolismo , Regulación Alostérica
3.
Proc Natl Acad Sci U S A ; 119(43): e2210535119, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256806

RESUMEN

The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy landscape for a model foam, our algorithm finds and descends meandering canyons in the landscape, which contain dense clusters of energy minima along their floors. Similar canyon structures in the energy landscapes of two model glass formers-hard sphere fluids and the Kob-Andersen glass-allow us to reach high densities and low energies, respectively. In the hard sphere system, fluid configurations are found to form continuous regions that cover the canyon floors up to densities well above the jamming transition. For the Kob-Andersen glass former, our technique samples low-energy states with modest computational effort, with the lowest energies found approaching the predicted Kauzmann limit.

4.
Proc Natl Acad Sci U S A ; 119(18): e2110085119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35452328

RESUMEN

G protein­coupled receptors (GPCRs) activate cellular responses ranging from odorants to neurotransmitters. Binding an agonist leads to activation of a heterotrimeric G protein (GP) that stimulates external signaling. Unfortunately, the mechanism remains unknown. We show for 15 class A GPCRs, including opioids, adrenergics, adenosines, chemokines, muscarinics, cannabinoids, serotonins, and dopamines, that interaction of an inactive GP, including Gs, Gi, Go, G11, and Gq, to the inactive GPCR, containing the intracellular ionic lock between transmembrane (TM) helices 3 and 6, evolves exothermically to form a precoupled GPCR-GP complex with an opened TM3-TM6 and the GP-α5 helix partially inserted into the GPCR but not activated. We show that binding of agonist to this precoupled GPCR-GP complex causes the Gα protein to open into its active form, with the guanosine diphosphate exposed for signaling. This GP-first paradigm provides a strategy for developing selective agonists for GPCRs since it is the pharmacophore for the precoupled GPCR-GP complex that should be used to design drugs.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Membrana Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
5.
J Comput Chem ; 45(16): 1390-1403, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38414274

RESUMEN

For a detailed understanding of chemical processes in nature and industry, we need accurate models of chemical reactions in complex environments. While Eyring transition state theory is commonly used for modeling chemical reactions, it is most accurate for small molecules in the gas phase. A wide range of alternative rate theories exist that can better capture reactions involving complex molecules and environmental effects. However, they require that the chemical reaction is sampled by molecular dynamics simulations. This is a formidable challenge since the accessible simulation timescales are many orders of magnitude smaller than typical timescales of chemical reactions. To overcome these limitations, rare event methods involving enhanced molecular dynamics sampling are employed. In this work, thermal isomerization of retinal is studied using tight-binding density functional theory. Results from transition state theory are compared to those obtained from enhanced sampling. Rates obtained from dynamical reweighting using infrequent metadynamics simulations were in close agreement with those from transition state theory. Meanwhile, rates obtained from application of Kramers' rate equation to a sampled free energy profile along a torsional dihedral reaction coordinate were found to be up to three orders of magnitude higher. This discrepancy raises concerns about applying rate methods to one-dimensional reaction coordinates in chemical reactions.

6.
J Mol Recognit ; : e3107, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375932

RESUMEN

The monoclonal IgE antibody SPE-7 was originally raised against a 2,4-dinitrophenyl (DNP) target. Through its ability to adopt multiple conformations, the antibody is capable of binding to a diverse range of small haptens and large proteins. The present study examines a dataset of experimentally determined crystal structures of the SPE-7 antibody to gain insight into the mechanisms that contribute to its multispecificity. With the emergence of more and more therapeutic antibodies against a huge repertoire of different targets, our research could be of great interest for future drug development. We are able to discriminate between the different paratope-binding states in the conformational ensembles obtained by enhanced sampling molecular dynamics simulations, and to calculate their transition timescales and state probabilities. Furthermore, we describe the key residues responsible for discriminating between the different binding capacities and identify a tryptophan in a central position of the CDR L3 loop as the residue of greatest interest. The overall dynamics of the paratope appear to be mainly influenced by the CDR L3 and CDR L1 loops.

7.
Chemistry ; 30(7): e202302596, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812133

RESUMEN

We present here a joint experimental and computational study on the formation of benzothiazoles. Our investigation reveals a green protocol for accessing benzothiazoles from acyl chlorides using either water alongside a reducing agent as the reaction medium or in combination with stoichiometric amounts of a weak acid, instead of the harsh conditions and catalysts previously reported. Specifically, we show that a protic solvent, particularly water, enables the formation of 2-substituted benzothiazoles from N-acyl 1,2-aminothiophenols already at room temperature, without the need for strong acids or metal catalysts. DFT Molecular Dynamics simulations coupled with advanced enhanced sampling techniques provide a clear understanding of the catalytic role of water. We demonstrate how bulk water - due to its extended network of hydrogen bonds and an efficient Grotthuss mechanism - provides a reaction path that strongly reduces the reaction barriers compared to aprotic environments, namely more than 80 kJ/mol for the first reaction step and 250 kJ/mol for the second. Finally, we discuss the influence of different aliphatic and aromatic substituents with varying electronic properties on chemical reactivity. Besides providing in-depth mechanistic insights, we believe that our findings pave the way for a greener route toward an important class of bioactive molecules.

8.
Chemistry ; : e202402982, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348451

RESUMEN

This study employs ab initio molecular dynamics simulations to investigate  the impact of solvent and non-bonded interactions on the structure-reactivity relationship of both strain-free and strained macrocyclic disulfides. Our findings reveal that interactions  with water as a solvent significantly influence the minimum energy geometry structures  of both conformers of the studied macrocycle.  In particular, our simulations identify short contacts, specifically S···π-aromatic interactions,  which suppress reactivity for the strained isomer by obstructing the reaction cone at the minimum free energy.   Surprisingly, the free energy barriers for the disulfide reaction with a simple nucleophile (OH- anion) remain very similar,  despite one conformer having a markedly more strained disulfide bond than the other. Enhanced molecular dynamics simulations in explicit solution  elucidate this apparent contradiction by revealing different solvent exposures of the two sulfur atoms in the macrocycles.

9.
Mol Divers ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935305

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

10.
Biochemistry (Mosc) ; 89(7): 1202-1210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39218019

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) plays a major role in the DNA damage repair and transcriptional regulation, and is targeted by a number of clinical inhibitors. Despite this, catalytic mechanism of PARP1 remains largely underexplored because of the complex substrate/product structure. Using molecular modeling and metadynamics simulations we have described in detail elongation of poly(ADP-ribose) chain in the PARP1 active site. It was shown that elongation reaction proceeds via the SN1-like mechanism involving formation of the intermediate furanosyl oxocarbenium ion. Intriguingly, nucleophilic 2'A-OH group of the acceptor substrate can be activated by the general base Glu988 not directly but through the proton relay system including the adjacent 3'A-OH group.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/química , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Dominio Catalítico , Poli Adenosina Difosfato Ribosa/metabolismo , Poli Adenosina Difosfato Ribosa/química
11.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561302

RESUMEN

Extensive classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations are used to establish the structural features of the O state in bacteriorhodopsin (bR) and its conversion back to the bR ground state. The computed free energy surface is consistent with available experimental data for the kinetics and thermodynamics of the O to bR transition. The simulation results highlight the importance of the proton release group (PRG, consisting of Glu194/204) and the conserved arginine 82 in modulating the hydration level of the protein cavity. In particular, in the O state, deprotonation of the PRG and downward rotation of Arg82 lead to elevated hydration level and a continuous water network that connects the PRG to the protonated Asp85. Proton exchange through this water network is shown by ∼0.1-µs semiempirical QM/MM free energy simulations to occur through the generation and propagation of a proton hole, which is relayed by Asp212 and stabilized by Arg82. This mechanism provides an explanation for the observation that the D85S mutant of bacteriorhodopsin pumps chloride ions. The electrostatics-hydration coupling mechanism and the involvement of all titration states of water are likely applicable to many biomolecules involved in bioenergetic transduction.


Asunto(s)
Bacteriorodopsinas/química , Arginina/química , Ácido Aspártico/química , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Cloruros/química , Cloruros/metabolismo , Simulación de Dinámica Molecular , Mutación , Protones , Teoría Cuántica , Agua/química
12.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928286

RESUMEN

Integrin αIIbß3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and ß3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbß3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and ß3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the ß3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.


Asunto(s)
Simulación de Dinámica Molecular , Oligopéptidos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Unión Proteica , Oligopéptidos/química , Oligopéptidos/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Humanos , Plaquetas/metabolismo , Sitios de Unión , Integrina beta3/metabolismo , Integrina beta3/química
13.
Angew Chem Int Ed Engl ; : e202407124, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251390

RESUMEN

The low-temperature liquid metals Ga-In and Ga-Sn have previously showcased >95% selectivity towards the electrochemical reduction of CO2 to formate, occuring only when the alloys are melted, not solid. Here, density functional theory molecular dynamics and metadynamics simulations reveal that CO2 does not directly adsorb to the Ga-alloy surface, but instead is reduced indirectly by reaction with an adsorbed hydrogen. The reaction barrier is vastly more favourable when this process occurs at In or Sn sites (average: 0.26 eV), than when it occurs on Ga (average: 0.47 eV). However, there is no difference in barrier between solid and liquid surfaces. Instead, we find that Hads is mobile only on the liquid surface, travelling due to the motion of the liquid beneath. This process drives Hads to In/Sn sites, allowing low-barrier CO2 reduction to occur only on the liquid. Therefore, the dynamic motion of liquid metal catalysts can underpin their unique reactivity. The result has far reaching implications for any protonation reaction conducted with a liquid metal catalyst.

14.
Angew Chem Int Ed Engl ; 63(12): e202317315, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38227422

RESUMEN

The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.


Asunto(s)
Antibacterianos , Ceftazidima , Ceftazidima/química , Ceftazidima/metabolismo , Antibacterianos/química , beta-Lactamasas/metabolismo , Proteínas Bacterianas/metabolismo , Compuestos de Azabiciclo , Sustitución de Aminoácidos , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas
15.
Proteins ; 91(3): 338-353, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36163697

RESUMEN

Human islet amyloid polypeptide (hIAPP) is a naturally occurring, intrinsically disordered protein (IDP) whose abnormal aggregation into toxic soluble oligomers and insoluble amyloid fibrils is a pathological feature in type-2 diabetes. Rat IAPP (rIAPP) differs from hIAPP by only six amino acids yet has a reduced tendency to aggregate or form fibrils. The structures of the monomeric forms of IAPP are difficult to characterize due to their intrinsically disordered nature. Molecular dynamics simulations can provide a detailed characterization of the monomeric forms of rIAPP and hIAPP in near-physiological conditions. In this work, the conformational landscapes of rIAPP and hIAPP as a function of secondary structure content were predicted using well-tempered bias exchange metadynamics simulations. Several combinations of commonly used biomolecular force fields and water models were tested. The predicted conformational preferences of both rIAPP and hIAPP are typical of IDPs, exhibiting dominant random coil structures but showing a low propensity for transient α-helical conformations. Predicted nuclear magnetic resonance Cα chemical shifts reveal different preferences with each force field towards certain conformations, with AMBERff99SBnmr2/TIP4Pd showing the best agreement with the experiment. Comparisons of secondary structure content demonstrate residue-specific differences between hIAPP and rIAPP that may reflect their different aggregation propensities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Animales , Ratas , Polipéptido Amiloide de los Islotes Pancreáticos/química , Diabetes Mellitus Tipo 2/metabolismo , Estructura Secundaria de Proteína , Simulación de Dinámica Molecular , Amiloide/química
16.
Proteins ; 91(2): 218-236, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36114781

RESUMEN

ß-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable ß-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 ß-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized ß-glucosidases for 2G-biofuel production for industry, biotechnology, and science.


Asunto(s)
Biocombustibles , beta-Glucosidasa , beta-Glucosidasa/genética , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Sustitución de Aminoácidos , Simulación de Dinámica Molecular , Dominio Catalítico
17.
J Comput Chem ; 44(3): 256-260, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35612818

RESUMEN

Closo-carborane anions are prominent, whereas the cations of the same are less abundant in the literature. As these ions have similar size and are weakly coordinating, the ionic liquids of these two ions could have important applications in many areas of chemistry. In view of limited number of polyhedral carborane cations available, we revisited the rearrangement of dicarboranyl methyl cation (7-CH2 7,9-nido-C2 B9 H10 + ) using ab initio molecular dynamics calculations with metadynamics. Our simulations confirmed the concerted mechanism of the rearrangement. We believe this work will resume the interest in its synthesis and carborane cations in general.

18.
J Comput Chem ; 44(21): 1771-1775, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37154248

RESUMEN

Here, we present a parametrization of the metadynamics simulations for reactions involving breaking the chemical bonds along a single collective variable coordinate. The parameterization is based on the similarity between the bias potential in metadynamics and the quantum potential in the de Broglie-Bohm formalism. We derive the method and test it on two prototypical reaction types: proton transfer and breaking of the cyclohexene cycle (reversed Diels-Alder reaction).

19.
J Comput Chem ; 44(30): 2319-2331, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548072

RESUMEN

As optical properties, the ultraviolet-visible (UV-Vis) absorption spectra of capsanthin-based red natural dye are a decisive parameter for their usage in various applications. Thus, accurately predicting the maximum UV-Vis wavelength ( λ max ) values is critical in designing dye-conjugated material. Extensive metadynamics simulations were carried out to generate capsanthin conformers at various levels of the extended tight-binding method. Benchmarking the time-dependent density-functional theory (TD-DFT) methods help understand the results of a particular functional and allows a comparison between results obtained with different functional. The long-range correction (LC) scheme in LC-TD-DFT-D4/ωB97X/def2-SVP has been found to reproduce the experimental λ max , and exhibited the effect of conformational changes to the calculated wavelengths. On the other hand, an inexpensive yet efficient LC-TD-DFTB method reproduced the experimental λ max insensitive to conformational changes.

20.
Chemistry ; 29(62): e202302375, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37555841

RESUMEN

In the context of drug discovery, computational methods were able to accelerate the challenging process of designing and optimizing a new drug candidate. Amongst the possible atomistic simulation approaches, metadynamics (metaD) has proven very powerful. However, the choice of collective variables (CVs) is not trivial for complex systems. To automate the process of CVs identification, two different machine learning algorithms were applied in this study, namely DeepLDA and Autoencoder, to the metaD simulation of a well-researched drug/target complex, consisting in a pharmacologically relevant non-canonical DNA secondary structure (G-quadruplex) and a metallodrug acting as its stabilizer, as well as solvent molecules.


Asunto(s)
Aprendizaje Automático , Simulación de Dinámica Molecular , Solventes , Algoritmos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA