Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(14): e2308473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37972267

RESUMEN

Decorating platinum (Pt) with a single atom offers a promising approach to tailoring their catalytic activity. In this study, for the first time, an innovative assistive active sites (AAS) strategy is proposed to construct high-loading (3.46wt.%) single Fe─N4 as AAS, which are further hybridized with small Pt nanoparticles to enhance both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities. For ORR, the target catalyst (Pt/HFeSA-HCS) exhibits a higher mass activity (MA) of 0.98 A mgPt -1 and specific activity (SA) of 1.39 mA cmPt -2 at 0.90 V versus RHE. As for MOR, Pt/HFeSA-HCS shows exceptional MA (3.21 A mgPt -1) and SA (4.27 mA cmPt -2) at peak values, surpassing commercial Pt/C by 15.3 and 11.5 times, respectively. The underlying mechanism behind this AAS strategy is to find that in MOR, Fe─N4 promotes water dissociation, generating more *OH to accelerate the conversion of *CO to CO2. Meanwhile, in ORR, Fe─N4 acts as a competitor to adsorb *OH, weakening Pt─OH bonding and facilitating desorption of *OH on the Pt surface. Constructing AAS that can enhance dual functionality simultaneously can be seen as a successful "kill two birds with one stone" strategy.

2.
Small ; 16(33): e2001135, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32583966

RESUMEN

High-performance electrocatalysts are of critical importance for fuel cells. Morphological modulation of the catalyst materials is a rare but feasible strategy to improve their performance. In this work, Pt nanowire arrays are directly synthesized with a template-less wet chemical method. The effects of surface functionalization and the reduction kinetics are revealed to be vital to the nanowire growth. The growth mechanism of the Pt nanowires is studied. By adjusting the concentration of the organic ligands, Pt nanowire arrays with tunable surface roughness can be obtained on various substrate surfaces. Such arrays avoid the contact resistance of randomly packed particles and allow open diffusion channels for reactants and products alike, making them excellent electrocatalysts for the methanol oxidation reaction. In particular, Pt nanowire arrays with rough surface have a mass activity of 1.24 A mgPt -1 at 1.12 V (vs Ag/AgCl), 3.18-fold higher than that of the commercial Pt/C catalysts. It also shows more resistant against poisoning, as indicated by the higher If /Ib ratio (2.06), in comparison to the Pt/C catalysts (1.30).

3.
ACS Appl Mater Interfaces ; 15(22): 26554-26562, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224303

RESUMEN

To improve the catalytic performance and durability of Pt catalysts used for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), alloying of Pt with other transition metals such as Ru, Co, Ni, and Fe is considered an effective approach. Despite the significant progress made in the preparation of bimetallic alloys and their utilization for MOR, improving the activity and durability of the catalysts to make them commercially viable remains a stiff challenge. In this work, trimetallic Pt100-x(MnCo)x (16 < x < 41) catalysts were successfully synthesized via borohydride reduction followed by hydrothermal treatment at 150 °C. The electrocatalytic performance of the synthesized trimetallic Pt100-x(MnCo)x (16 < x < 41) catalysts toward MOR was studied using cyclic voltammetry and chronoamperometry. The results affirm that all Pt100-x(MnCo)x (16 < x < 41) alloys have superior MOR activity and durability as compared to bimetallic PtCo alloys and commercially available Pt/C (comm. Pt/C) catalysts. Among all the compositions studied, the Pt60Mn1.7Co38.3/C catalyst exhibited superior mass activity (1.3 and 1.9 times higher than those of Pt81Co19/C and comm. Pt/C, respectively) toward MOR. Furthermore, all the newly synthesized Pt100-x(MnCo)x/C (16 < x < 41) catalysts showed better CO tolerance when compared with comm. Pt/C. This improved performance of the Pt100-x(MnCo)x/C (16 < x < 41) catalyst can be attributed to the synergistic effect of Co and Mn on the Pt lattice.

4.
Chemosphere ; 312(Pt 1): 137203, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375606

RESUMEN

To boost the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) of pristine NiFe-layered double hydroxides (LDH), the NiFe-LDH/Mo-doped graphitic carbon nitride (NiFe-LDH/MoCN) heterojunction was synthesized herein through hydrothermal method. The establishment of built-in electric field in NiFe-LDH/MoCN heterojunction enhanced the electrochemical oxidation activities towards both seawater splitting and methanol oxidation, via the improving electrocatalyst surface wettability and conductivity. Almost 10-fold enhancement of turnover frequency (TOF) and electrochemical active surface area (ECSA) than pure NiFe-LDH implied more active sites to participate in catalytic reactions via Mo doping and the formation of heterostructure. Moreover, the local charge redistribution demonstrated in the NiFe-LDH/MoCN interface region may favor the adsorption of methanol and OH- in the seawater. The present work may expound the strong coupling interaction and the establishment of built-in electric field in the interface between NiFe-LDH and semiconductor to enhance both methanol oxidation and seawater oxidation for NiFe-LDH.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824116

RESUMEN

In this work a novel bimetallic nickel oxide/copper oxide metal-organic framework (NiO/CuO MOF) has been developed by using two linkers: Benzene Dicarboxylic acid (BDC) and Pyrazine. The composites of NiO/CuO MOF with different amounts of reduced graphene oxide (rGO) were synthesized through a hydrothermal method and subsequently characterized by multiple significant techniques like XRD, SEM, EDX, FTIR and Raman IR for an investigation of their structural and morphological properties. The prepared series of material was later employed for electrochemical oxidation of methanol, tested by cyclic voltammetry (CV) in basic medium on a modified glassy carbon electrode (GCE). The electrochemical response depicts that increasing concentration of rGO enhances the electrocatalytic activity of the catalyst for methanol oxidation reaction (MOR). The catalyzed oxidation reaction of methanol by NiO/CuO MOF and rGO-NiO/CuO MOF composites give a superlative current density of 437. 28 mA/cm2 at 0.9 V potential at 50 mV/s scan rate. This activity makes it a promising catalytic material for electrolysis of methanol in direct methanol fuel cell (DMFC).

6.
ACS Appl Mater Interfaces ; 10(19): 16376-16389, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29658695

RESUMEN

Recent reports about the promising and tunable electrocatalytic activity and stability of nanoalloys have stimulated an intense research activity toward the design and synthesis of homogeneously alloyed novel bimetallic nanoelectrocatalysts. We herein present a simple one-pot facile wet-chemical approach for the deposition of high-quality bimetallic palladium-silver (PdAg) homogeneous nanoalloy crystals on reduced graphene (Gr) oxide sheets. Morphological, structural, and chemical characterizations of the so-crafted nanohybrids establish a homogeneous distribution of 1:1 PdAg nanoalloy crystals supported over reduced graphene oxide (PdAg-Gr). The PdAg-Gr nanohybrids exhibit outstanding electrocatalytic, catalytic, and electroanalytical performances. The PdAg-Gr samples were found to exhibit exceptional durability when subjected to repeated potential cycles or long-term electrolysis. In the CVs recorded for fuel cell reactions, viz. methanol oxidation reaction and oxygen reduction reaction, and for detoxification of environmental pollutants, viz. electroreduction of methyl iodide and chloroacetonitrile over PdAg-Gr with potential sweep rate of 25 mVs-1, the peak potentials were observed to be just -0.221, -0.297, (vs Ag/AgCl, 3 M KCl) -1.508, and -1.189 V (vs Fc+/Fc), respectively. The potential of PdAg-Gr nanohybrid for simultaneous and sensitive electrochemical sensing and estimation of hydroxybenzene isomers with very low detection limits (0.05 µM for hydroquinone, 0.06 µM for catechol, 6.7 nM for 4-aminophenol, and 13.7 nM for 2-aminophenol) is demonstrated. Additionally, PdAg-Gr was observed to offer excellent solution-phase catalytic performance in bringing about the reduction of notorious environmental pollutant 4-nitrophenol to pharmaceutically important 4-aminophenol with an apparent rate constant ( kapp) of 3.106 × 10-2 s-1 and a normalized rate constant ( knor) of 6.21 × 102 s-1 g-1. The presented synthetic scheme besides being high yielding, low cost, and easy to carry out results in the production of PdAg-Gr nanohybrids with stability and activity significantly better than most of the nanomaterials purposefully designed and testified so far by various groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA