Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28919076

RESUMEN

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Asunto(s)
Antígenos CD28/metabolismo , Activación de Linfocitos , Mitocondrias/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Carnitina O-Palmitoiltransferasa , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Interleucina-15/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Estrés Fisiológico , Linfocitos T/metabolismo
2.
J Transl Med ; 22(1): 793, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198847

RESUMEN

BACKGROUND: The development of acquired EGFR-TKI treatment resistance is still a major clinical challenge in the treatment of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of HDAC1/FOXK1/miR-33a signaling in EGFR-TKI resistance. METHODS: The expression levels of miR-33a, HDAC1, and FOXK1 were examined using quantitative polymerase chain reaction (PCR) and bioinformatics analysis. Cell proliferation, migration, and apoptosis were explored by cell number assay, Transwell, and flow cytometry assays, respectively. After overexpression or knockdown of HDAC1, miR-33a expression in the cells, cell functions were tested. Immunoprecipitation and correlation analyses were used to evaluate the interaction between HDAC1 and FOXK1 protein. The tumor-suppressive role of miR-33a was investigated by animal experiments. RESULTS: The suppression of miR-33a increased TKI resistance by affecting cell proliferation, migration, and apoptosis in gefitinib-resistant cells. HDAC1 is the key upstream molecule that inhibits miR-33 expression. HDAC1 upregulation increased gefitinib resistance by its binding to FOXK1 in cells to silence miR-33a expression. MiR-33a overexpression exerts tumor-suppressive effects by negatively regulating ABCB7 and p70S6K1 expression. Moreover, overexpression of miR-33a inhibited tumor growth in a xenograft nude mouse model. CONCLUSIONS: HDAC1/FOXK1 upregulation and miR-33a silencing are new mechanisms of EGFR-TKI resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Factores de Transcripción Forkhead , Silenciador del Gen , Histona Desacetilasa 1 , Neoplasias Pulmonares , MicroARNs , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Avian Pathol ; 53(1): 68-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855868

RESUMEN

RESEARCH HIGHLIGHTS: MG-HS regulates the expression of transcription factor STAT5.Transcription factor STAT5 can target miR-33-5p promoter element.MG-influenced STAT5 regulates miR-33-5p and its target gene expression.


Asunto(s)
MicroARNs , Infecciones por Mycoplasma , Mycoplasma gallisepticum , Animales , Mycoplasma gallisepticum/genética , MicroARNs/genética , MicroARNs/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Línea Celular , Infecciones por Mycoplasma/veterinaria , Fibroblastos , Pollos/genética
4.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287866

RESUMEN

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Asunto(s)
Adipogénesis , Epigénesis Genética , MicroARNs , Obesidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Animales , Adipocitos/metabolismo , Exosomas/metabolismo , Exosomas/genética , Regulación de la Expresión Génica
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062888

RESUMEN

Mirtrons represent a subclass of microRNAs (miRNAs) that rely on the splicing machinery for their maturation. However, the molecular details of this Drosha-independent processing are still not fully understood; as an example, the Microprocessor complex cannot process the mirtronic pre-miRNA from the transcript even if splice site mutations are present. To investigate the influence of alternative splicing sites on mirtron formation, we generated Enhanced Green Fluorescent Protein (EGFP) reporters containing artificial introns to compare the processing of canonical miRNAs and mirtrons. Although mutations of both splice sites generated a complex pattern of alternative transcripts, mirtron formation was always severely affected as opposed to the normal processing of the canonical hsa-mir-33b miRNA. However, we also detected that while its formation was also hindered, the mirtron-derived hsa-mir-877-3p miRNA was less affected by certain mutations than the hsa-mir-877-5p species. By knocking down Drosha, we showed that this phenomenon is not dependent on Microprocessor activity but rather points toward the potential stability difference between the miRNAs from the different arms. Our results indicate that when the major splice sites are mutated, mirtron formation cannot be rescued by nearby alternative splice sites, and stability differences between 5p and 3p species should also be considered for functional studies of mirtrons.


Asunto(s)
Empalme Alternativo , MicroARNs , Ribonucleasa III , MicroARNs/genética , Humanos , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Mutación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Intrones/genética
6.
Fish Shellfish Immunol ; 134: 108606, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758656

RESUMEN

The tumor necrosis factor receptor-associated factor 6 (TRAF6) can act as a fundamental adaptor protein in a chain reaction of signal transduction and cascade events to finish off immune defenses. However, immunomodulatory research on TRAF6 gene is still limited in fish. In this study, a novel miRNA, Cse-miR-33 was identified from the whole genome of Chinese tongue sole (Cynoglossus semilaevis). After separate infections with three different Vibrio strains (V. harveyi, V. anguillarum, V. parahemolyticus) and one virus (nervous necrosis virus, NNV), the expressions of CsTRAF6 and Cse-miR-33 displayed significant time-dependent changes in immune related tissues and the trends were opposite in general. Through target gene prediction and dual luciferase reporter assay, Cse-miR-33 was proven to regulate CsTRAF6 by combining with 3'-UTR sequence of the gene. The results of qRT-PCR and western blotting (WB) analyses showed that Cse-miR-33 blocked the translation of CsTRAF6 protein at post-transcriptional level, rather than degrading the target mRNA. Further experiment indicated that Cse-miR-33 inhibitor largely reduced the death rate of Chinese tongue sole caused by V. harveyi and NNV. The expressions of CsTRAF6-associated immune genes (such as CsIL-1R, CsMYD88, CsIRAK1, CsTNFα, CsIL6 and CsIL8) were also significantly changed in response to Cse-miR-33 agomir and inhibitor. The study suggested that Cse-miR-33 affected the immune response via targeting CsTRAF6 in C. semilaevis, which would provide us deep insights into miRNA-mediated regulatory network and help improve the immunity in fish.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Lenguado , MicroARNs , Vibriosis , Vibrio , Animales , MicroARNs/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Vibrio/fisiología , Lenguado/genética , Proteínas de Peces/genética
7.
Anim Biotechnol ; 34(7): 2636-2648, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35984635

RESUMEN

The regulatory mechanisms governing metabolism of fatty acids in cow mammary gland are crucial for establishing relationships between milk quality and fatty acid content. Both, microRNAs (miRNAs) and protein-coding genes are important factors involved in the regulation of milk fat synthesis. In this study, high-throughput sequencing of miRNAs and mRNAs in bovine mammary gland tissue was performed during peak lactation (3 samples) and late lactation (3 samples) periods to characterize expression profiles. Differential expression (DE) analyses of miRNA and mRNA and miRNA-mRNA regulatory pathway screening were performed. Two-hundred eighty regulatory miRNA-mRNA pairs were identified, including the miR-33a-lipid phosphate phosphatase-related protein type 4 (LPPR4) pathway. Bioinformatics prediction, dual-luciferase reporter system detection, qRT-PCR, and Western blotting revealed that miR-33a can directly target LPPR4 and inhibit its expression. Experiments also revealed that miR-33a promotes the synthesis of triglycerides and increases the content of unsaturated fatty acids (UFAs) in bovine mammary epithelial cells (BMECs). These results indicate that miR-33a via LPPR4 plays an important role in the regulation of milk fat synthesis and UFA levels.


Asunto(s)
Glándulas Mamarias Animales , MicroARNs , Femenino , Bovinos , Animales , Glándulas Mamarias Animales/metabolismo , Ácidos Grasos , Leche/metabolismo , Ácidos Grasos Insaturados/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Lactancia/genética , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445956

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally inhibit gene expression. These small molecules are involved in several biological conditions such as inflammation, cell growth and proliferation, and regulation of energy metabolism. In the context of metabolic and cardiovascular diseases, miR-33 is of particular interest as it has been implicated in the regulation of lipid and glucose metabolism. This miRNA is located in introns harboured in the genes encoding sterol regulatory element-binding protein (SREBP)-1 and SREBP-2, which are key transcription factors involved in lipid biosynthesis and cholesterol efflux. This review outlines the role of miR-33 in a range of metabolic and cardiovascular pathologies, such as dyslipidaemia, nonalcoholic fatty liver disease (NAFLD), obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA), and it provides discussion about the effectiveness of miR-33 deficiency as a possible therapeutic strategy to prevent the development of these diseases.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Humanos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Colesterol/metabolismo , Enfermedades Cardiovasculares/genética , Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/metabolismo
9.
Cancer Sci ; 113(8): 2888-2903, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35579082

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate of up to 40%. The prognosis of the disease needs improvement and requires a understanding of its molecular mechanism. We investigated the mechanisms of DLBCL development and its sensitivity to chemotherapy by focusing on circPCBP2/miR-33a/b/PD-L1 axis. Human DLBCL specimens and cultured cancer cell lines were used. Features of circPCBP2 were systematically characterized through Sanger sequencing, Actinomycin D, RNase R treatment, and FISH. The expression levels of circPCBP2, miR-33a/b, PD-L1, stemness-related markers, ERK/AKT and JAK2/STAT3 signaling were measured using qRT-PCR, western blotting, and immunohistochemistry. Stemness of DLBCL cells was assessed through spheroid formation assay and flow cytometry. Cell viability and apoptosis upon cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) treatment were determined using MTT assay and flow cytometry, respectively. Interactions of circPCBP2-miR-33a/b and miR-33a/b-PD-L1 were validated using dual luciferase activity assay and RNA-RIP. Nude mouse xenograft model was used to assess the function of circPCBP2 in DLBCL growth in vivo. circPCBP2 was upregulated in human DLBCL specimens and cultured DLBCL cells while miR-33a/b was reduced. Knockdown of circPCBP2 or miR-33a/b overexpression inhibited the stemness of DLBCL cells and promoted cancer cell apoptosis upon CHOP treatment. circPCBP2 directly bound with miR-33a/b while miR-33a/b targeted PD-L1 3'-UTR. circPCBP2 disinhibited PD-L1 signaling via sponging miR-33a/b. miR-33a/b inhibitor and activating PD-L1 reversed the effects of circPCBP2 knockdown and miR-33a/b mimics, respectively. circPBCP2 knockdown restrained DLBCL growth in vivo and potentiated the anti-tumor effects of CHOP. In conclusion, circPCBP2 enhances DLBCL cell stemness but suppresses its sensitivity to CHOP via sponging miR-33a/b to disinhibit PD-L1 expression. circPCBP2/miR-33a/b/PD-L1 axis could serve as a diagnosis marker or therapeutic target for DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , MicroARNs , ARN Circular , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Ratones , MicroARNs/genética , Recurrencia Local de Neoplasia , ARN Circular/genética
10.
Exp Cell Res ; 399(1): 112443, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340492

RESUMEN

The hallmark of atherogenesis is characterized as endothelial dysfunction and subsequent macrophage activation. Although our previous study has demonstrated that endothelin-1 (ET-1) plays an important role in atherogenesis, the underlying mechanism remains deeply investigation. Enhanced atherosclerotic plaques were observed in endothelium-specific ET-1 overexpression ApoE-/- mice (eET-1/ApoE-/-) concomitant with increased secretion of pro-inflammatory adhesion molecules and cytokines. The conditional media used for culturing human umbilical vein endothelial cells (HUVECs) with AdET-1 infection and subjected to OX-LDL stimulation, was collected and utilized for bone marrow-derived macrophages (BMDMs) culturing. RT-PCR analysis showed increased genes expression related to classical M1 macrophages but decreased alternative activated M2 macrophages genes expression in macrophage culturing with the conditional media. Furthermore, consistent regulations of macrophage polarization were observed using isolated exosomes from the conditional media. More importantly, we noticed that miR-33 was enriched in the exosomes derived by HUVECs with AdET-1 infection, while bioinformatics analysis further indicated that miR-33 directly targeted NR4A and miR-33/NR4A axis was required for the effect of endothelial-specific ET-1 overexpression on pro-inflammatory macrophage activation. By contrast, such effects could be reversed by ET-1 knockdown. Taken together, our study indicated that the exosomes derived by HUVECs with AdET-1 infection can transfer miR-33 to macrophages and subsequently promote pro-inflammatory macrophage activation by directly targeting to NR4A. These evidences clearly revealed that miR-33/NR4A axis was the important mechanism underlying the effect of ET-1 on macrophage activation and indicated that ET-1 may act as a promising target for atherosclerosis management.


Asunto(s)
Endotelina-1/genética , Endotelio Vascular/metabolismo , Activación de Macrófagos/genética , MicroARNs/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Endotelina-1/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Especificidad de Órganos/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA