Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.226
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(5): 1402-1419.e18, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33152263

RESUMEN

We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.


Asunto(s)
Linaje de la Célula , Modelos Biológicos , Teratoma/patología , Animales , Células HEK293 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Teratoma/genética
2.
Genes Dev ; 38(13-14): 597-613, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39111824

RESUMEN

Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.


Asunto(s)
MicroARNs , Estabilidad del ARN , MicroARNs/metabolismo , MicroARNs/genética , Estabilidad del ARN/genética , Animales , Humanos , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Regulación de la Expresión Génica
3.
Mol Cell ; 83(11): 1810-1826.e8, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267903

RESUMEN

Microprocessor (MP), DROSHA-DGCR8, processes primary miRNA transcripts (pri-miRNAs) to initiate miRNA biogenesis. The canonical cleavage mechanism of MP has been extensively investigated and comprehensively validated for two decades. However, this canonical mechanism cannot account for the processing of certain pri-miRNAs in animals. In this study, by conducting high-throughput pri-miRNA cleavage assays for approximately 260,000 pri-miRNA sequences, we discovered and comprehensively characterized a noncanonical cleavage mechanism of MP. This noncanonical mechanism does not need several RNA and protein elements essential for the canonical mechanism; instead, it utilizes previously unrecognized DROSHA dsRNA recognition sites (DRESs). Interestingly, the noncanonical mechanism is conserved across animals and plays a particularly significant role in C. elegans. Our established noncanonical mechanism elucidates MP cleavage in numerous RNA substrates unaccounted for by the canonical mechanism in animals. This study suggests a broader substrate repertoire of animal MPs and an expanded regulatory landscape for miRNA biogenesis.


Asunto(s)
MicroARNs , Animales , MicroARNs/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , ARN Bicatenario , Procesamiento Postranscripcional del ARN
4.
Genes Dev ; 37(13-14): 661-674, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553261

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Mamíferos/genética , Secuencia de Bases
5.
Mol Cell ; 81(23): 4942-4953.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34655516

RESUMEN

The distribution, dynamics, and function of RNA structures in human development are under-explored. Here, we systematically assayed RNA structural dynamics and their relationship with gene expression, translation, and decay during human neurogenesis. We observed that the human ESC transcriptome is globally more structurally accessible than differentiated cells and undergoes extensive RNA structure changes, particularly in the 3' UTR. Additionally, RNA structure changes during differentiation are associated with translation and decay. We observed that RBP and miRNA binding is associated with RNA structural changes during early neuronal differentiation, and splicing is associated during later neuronal differentiation. Furthermore, our analysis suggests that RBPs are major factors in structure remodeling and co-regulate additional RBPs and miRNAs through structure. We demonstrated an example of this by showing that PUM2-induced structure changes on LIN28A enable miR-30 binding. This study deepens our understanding of the widespread and complex role of RNA-based gene regulation during human development.


Asunto(s)
Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Neurogénesis , Neuronas/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Diferenciación Celular , Análisis por Conglomerados , Técnicas Genéticas , Células HEK293 , Humanos , MicroARNs/metabolismo , Modelos Estadísticos , Neuronas/fisiología , Conformación de Ácido Nucleico , ARN/análisis , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Biología de Sistemas , Transcriptoma
6.
Annu Rev Physiol ; 86: 225-253, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345906

RESUMEN

Exosomes are small extracellular vesicles that carry lipids, proteins, and microRNAs (miRNAs). They are released by all cell types and can be found not only in circulation but in many biological fluids. Exosomes are essential for interorgan communication because they can transfer their contents from donor to recipient cells, modulating cellular functions. The miRNA content of exosomes is responsible for most of their biological effects, and changes in exosomal miRNA levels can contribute to the progression or regression of metabolic diseases. As exosomal miRNAs are selectively sorted and packaged into exosomes, they can be useful as biomarkers for diagnosing diseases. The field of exosomes and metabolism is expanding rapidly, and researchers are consistently making new discoveries in this area. As a result, exosomes have great potential for a next-generation drug delivery platform for metabolic diseases.


Asunto(s)
Exosomas , Enfermedades Metabólicas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo , Enfermedades Metabólicas/metabolismo
7.
Genes Dev ; 34(17-18): 1227-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820039

RESUMEN

Identifying miRNA target genes is difficult, and delineating which targets are the most biologically important is even more difficult. We devised a novel strategy to test the phenotypic impact of individual microRNA-target interactions by disrupting each predicted miRNA-binding site by CRISPR-Cas9 genome editing in C. elegans We developed a multiplexed negative selection screening approach in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Importantly, our screen was conducted in vivo on mutant animals, allowing us to interrogate organism-level phenotypes. We used this approach to screen for phenotypic targets of the essential mir-35-42 family. By generating 1130 novel 3'UTR alleles across all predicted targets, we identified egl-1 as a phenotypic target whose derepression partially phenocopies the mir-35-42 mutant phenotype by inducing embryonic lethality and low fecundity. These phenotypes can be rescued by compensatory CRISPR mutations that retarget mir-35 to the mutant egl-1 3'UTR. This study demonstrates that the application of in vivo whole organismal CRISPR screening has great potential to accelerate the discovery of phenotypic negative regulatory elements in the noncoding genome.


Asunto(s)
Caenorhabditis elegans/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Alelos , Animales , Sitios de Unión/genética , Sistemas CRISPR-Cas , Edición Génica , Pruebas Genéticas , MicroARNs/genética , Mutación , Fenotipo
8.
Trends Genet ; 39(1): 5-8, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36058789

RESUMEN

The tightly regulated feedback loops linking small RNAs (sRNAs) and transposable elements (TEs) offer the opportunity for an adaptive response to changing environments at the molecular level. Environmentally induced changes in TE and sRNA profiles may affect expression of coding genes and trigger an organismic and transgenerational response. Understanding this link may provide a mechanistic explanation for how species can adapt to changing climates and may offer novel molecular targets for biomedical and agricultural applications.


Asunto(s)
Elementos Transponibles de ADN , ARN Interferente Pequeño/genética , Elementos Transponibles de ADN/genética
9.
Eur J Immunol ; 54(6): e2350548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634287

RESUMEN

Transforming growth factor beta (TGF-ß) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-ß signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-ß signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-ß-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-ß-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-ß signaling may restore immune homeostasis in MS patients.


Asunto(s)
Autoinmunidad , Sistema Nervioso Central , Encefalomielitis Autoinmune Experimental , MicroARNs , Esclerosis Múltiple , Transducción de Señal , Linfocitos T Reguladores , Células Th17 , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Autoinmunidad/inmunología , Diferenciación Celular/inmunología , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/genética , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo
10.
Hum Genomics ; 18(1): 16, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326874

RESUMEN

BACKGROUND: Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pancreatic ß-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes (T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strategies focusing on restoring ß-cell mass and ß-cell insulin secretory capacity may impact disease management. This study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated gene expression data to unveil novel potential molecular targets associated with ß-cell dysfunction. METHODS: A comprehensive literature search for human studies on gene expression alterations in the pancreas associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioinformatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together with protein-protein interaction networks and the identification of potential transcription factors (TFs). For noncoding differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental for establishing a robust regulatory network. RESULTS: Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcription factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabolism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway emerged as the only common pathway to all datasets. CONCLUSIONS: This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds promise in modulating α-cells transdifferentiation into ß-cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulinas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Redes Reguladoras de Genes/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Diabetes Mellitus Tipo 2/genética , Factores de Transcripción/genética , Insulinas/genética , Biología Computacional , Proteínas Portadoras/genética , Proteínas Serina-Treonina Quinasas/genética
11.
FASEB J ; 38(17): e70038, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39250169

RESUMEN

Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.


Asunto(s)
Enfermedades Metabólicas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/genética , Obesidad/metabolismo , Obesidad/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/terapia , Hígado Graso/etiología
12.
Exp Cell Res ; 437(2): 114014, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547959

RESUMEN

Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin ß1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin ß1/TGFß1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Diferenciación Celular
13.
Exp Cell Res ; 442(2): 114278, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39383930

RESUMEN

A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.


Asunto(s)
Exosomas , Neoplasias Gastrointestinales , MicroARNs , Microambiente Tumoral , Humanos , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Microambiente Tumoral/genética , Animales , Regulación Neoplásica de la Expresión Génica , Transducción de Señal
14.
Exp Cell Res ; 441(1): 114168, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004201

RESUMEN

Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.


Asunto(s)
Adipogénesis , Exosomas , MicroARNs , Adipogénesis/genética , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Adipocitos/metabolismo
15.
Exp Cell Res ; 442(2): 114236, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39245198

RESUMEN

Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Transducción de Señal/genética , Animales
16.
Exp Cell Res ; 442(2): 114272, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362302

RESUMEN

The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O2⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H2O2). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , MicroARNs , Humanos , Ferroptosis/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Animales , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Peroxidación de Lípido
17.
Cell Mol Life Sci ; 81(1): 436, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414635

RESUMEN

BACKGROUND: The ligamentum flavum (LF) is an important anatomical structure of the spine. Ossification of the LF (OLF) has become the leading cause of thoracic spinal stenosis. Circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification are reported to be associated with several human diseases. However, the role of circRNAs and m6A modification in the pathogenesis of OLF has not been fully investigated. Here, we aimed to explore the vital function of circRNAs and m6A modification in OLF. MATERIALS AND METHODS: We analysed the circRNA expression of 4 OLF tissues and 4 normal LF tissues using bioinformatic analysis and identified circCDK14 for further analysis. We investigated the effects of circCDK14 on the osteogenic differentiation of LF cells. We observed that circCDK14 regulated its target genes by binding to miRNAs as a miRNA sponge. Moreover, the circRNA pull-down assay indicated that RNA-binding proteins might regulate the expression of circCDK14 via m6A modification. RESULTS: CircCDK14 was significantly upregulated in OLF tissues compared to normal LF tissues. Overexpression of circCDK14 promoted the osteogenic differentiation of LF cells. Mechanistically, CircCDK14 promoted the expression of ALF transcription elongation Factor 4 (AFF4) by serving as a sponge for miR-93-5p. Moreover, Wilms tumour 1-associated protein (WTAP) increased the stability of circCDK14 via N6-methyladenosine modification. CONCLUSION: The m6A-modified CircCDK14 binding to miR-93-5p played an important role in the osteogenesis of LF cells by targeting AFF4, providing a promising therapeutic target for OLF.


Asunto(s)
Adenosina , Diferenciación Celular , Epigénesis Genética , Ligamento Amarillo , MicroARNs , Osteogénesis , ARN Circular , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Osteogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
18.
Cell Mol Life Sci ; 81(1): 282, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943031

RESUMEN

Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.


Asunto(s)
Cetuximab , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , MicroARNs , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Cetuximab/farmacología , Resistencia a Antineoplásicos/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Animales , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/genética , Femenino , Ratones Desnudos
19.
Proc Natl Acad Sci U S A ; 119(12): e2122708119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35298333

RESUMEN

SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Blastocisto , Bovinos , Medios de Cultivo , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Vesículas Extracelulares/genética , MicroARNs/genética
20.
BMC Biol ; 22(1): 205, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267057

RESUMEN

BACKGROUND: MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS: We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS: SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.


Asunto(s)
MicroARNs , ARN Ribosómico , ARN de Transferencia , MicroARNs/genética , MicroARNs/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Secuencia de Bases , Isoformas de ARN/genética , Línea Celular Tumoral , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA