RESUMEN
BACKGROUND: The contribution of bacteria to fermented tea is not clear and the associated research is relatively limited. To reveal the role of microorganisms in fermented tea processing, the microbial community and metabolites of Fuzhuan brick tea (FBT), a Chinese traditional fermented tea, were revealed via high-throughput sequencing and liquid chromatography-mass spectrometry (LC-MS). RESULTS: In FBT, bacterial communities had a higher abundance and diversity, Lactococcus and Bacillus were the main bacteria, and Eurotium was the predominant fungus. The predictive metabolic function indicated the pathways of cellular growth, environmental information, genetics and material metabolism of bacterial communities were abundant, whereas the fungal community predictive metabolic function was almost saprotroph. Using LC-MS, 1143 and 536 metabolites were defined in positive and negative ion mode, respectively. There were essential correlations between bacterial populations and metabolites, such that Bacillus was correlated significantly with 44 metabolites (P < 0.05) and Enterococcus was significantly associated with 15 metabolites (P < 0.05). Some of the main active components were significantly correlated with the bacteria, such as Enterococcus, Lactococcus and Carnobacterium. CONCLUSION: Not only Eurotium, but also the bacteria were involved in the changes of metabolomics profile in fermented FBT. The present study assists in providing new insights into metabolomics profile generation in fermented tea. The present research lays a foundation for controlling the FBT fermentation by artificial inoculation to improve quality. © 2021 Society of Chemical Industry.
Asunto(s)
Bacterias/metabolismo , Camellia sinensis/microbiología , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Camellia sinensis/metabolismo , Cromatografía Liquida , Fermentación , Hongos/química , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Espectrometría de Masas , Metabolómica , Té/químicaRESUMEN
Increasingly prevalent Microcystis blooms and the propagation of the associated resistance genes represent global environmental problems. Constructed wetlands (CWs) are a cost-effective technology used for wastewater treatment. In this study, the herb Alisma orientale and three industrial byproducts, namely, blast furnace slag, biochar, and sawdust, were selected to construct mini-CW units. Their potential to remediate toxic Microcystis and their influences on the behaviors of antibiotic-resistant genes (ARGs, sul1, sul2, and intl1) were analyzed. Approximately 98.46% of Microcystis cells were removed by the sawdust-based CW in just 2 d, wherein <0.37 µg/L residual microcystin (MC)-LR was detected, with a removal efficiency of >96.47%, which is potentially caused by the higher relative abundance of MC-degrading gene mlrA on the substrate. Lower target ARG accumulations in the sawdust-based CW may be attributed to the lower intl1 relative abundance and microbial function mobile element content, which could influence horizontal gene transfer. In three sequential batches for the treatment of eutrophic lake water, six sawdust-based CW units were assembled into CW microcosms. The efficiency of removal of Microcystis and MC-LR by planted CW microcosms ranged between 92.00% and 95.88% and between 86.48% and 94.82%, respectively; this was significantly (P < 0.05) higher than that by unplanted ones. Less accumulation of target ARGs was also observed in planted CWs. Planting considerably improved nitrogen removal, possibly owing to the enrichment of genes involved in the KEGG nitrogen metabolism pathway in the substrate through metagenomic analysis.
Asunto(s)
Microcystis , Purificación del Agua , Microcystis/genética , Sulfanilamida , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , HumedalesRESUMEN
Protein-rich Sesbania cannabina and sugar-rich sweet sorghum [Sorghum dochna (Forssk.) Snowden] are characterized by their higher tolerance to saline-alkaline stresses and simultaneous harvests. They could be utilized for coensiling because of their nutritional advantages, which are crucial to compensate protein-rich forage in saline-alkaline regions. The current study investigated the fermentation quality, microbial community succession, and predicted microbial functions of Sesbania cannabina and sweet sorghum in mixed silage during the fermentation process. Before ensiling, the mixtures were treated with compound lactic acid bacteria (LAB) inoculants followed by 3, 7, 14, 30, and 60 days of fermentation. The results revealed that the inoculated homofermentative species Lactobacillus plantarum and Lactobacillus farciminis dominated the early phase of fermentation, and these shifted to the heterofermentative species Lactobacillus buchneri and Lactobacillus hilgardii in the later phase of fermentation. As a result, the pH of the mixed silages decreased significantly, accompanied by the growth of acid-producing microorganisms, especially L. buchneri and L. hilgardii, which actively influenced the bacterial community structure and metabolic pathways. Moreover, the contents of lactic acid, acetic acid, 1,2-propanediol, and water-soluble carbohydrates increased, while the contents of ammonia-N and fiber were decreased, with increasing ratios of sweet sorghum in the mixed silage. Overall, coensiling Sesbania cannabina with >30% sweet sorghum is feasible to attain high-quality silage, and the relay action between homofermentative and heterofermentative LAB species could enhance fermentation quality and conserve the nutrients of the mixed silage. IMPORTANCE The coensiling of Sesbania cannabina and sweet sorghum is of great practical importance in order to alleviate the protein-rich forage deficiency in saline-alkaline regions. Furthermore, understanding the microbial community's dynamic changes, interactions, and metabolic pathways during ensiling will provide the theoretical basis to effectively regulate silage fermentation. Here, we established that coensiling Sesbania cannabina with >30% sweet sorghum was effective at ensuring better fermentation quality and preservation of nutrients. Moreover, the different fermentation types of LAB strains played a relay role during the fermentation process. The homofermentative species L. plantarum and L. farciminis dominated in the early phase of fermentation, while the heterofermentative species L. buchneri and L. hilgardii dominated in the later phase of fermentation. Their relay action in Sesbania cannabina-sweet sorghum mixed silage may help to improve fermentation quality and nutrient preservation.
Asunto(s)
Microbiota , Sesbania , Sorghum , Ensilaje/análisis , Ensilaje/microbiología , Fermentación , Sorghum/metabolismo , Sorghum/microbiología , Sesbania/metabolismo , Amoníaco , Propilenglicol , Grano Comestible , Ácido Acético/análisis , Ácido Láctico/metabolismo , Carbohidratos , Azúcares , Agua , Zea mays/metabolismoRESUMEN
Porcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that causes watery diarrhea in piglets. Little is known regarding the alteration of the gut microbiota in PDCoV-induced diarrhea piglets. In this study, 5-day-old piglets were experimentally infected with PDCoV strain CH-01, and all piglets developed typical clinical disease, characterized by acute and severe watery diarrhea. Histologic lesions were limited to the villous epithelium of the duodenum and ileum. Gut microbiota profiles in the colon and feces of piglets inoculated with PDCoV were investigated using 16S rRNA sequencing. The results showed that PDCoV infection reduced bacterial diversity and significantly altered the composition of the microbiota from the phylum to the genus level in the colon and feces of piglets. Firmicutes (phylum), Lactobacillaceae (family), and Lactobacillus (genus) were significantly increased (p < .01), while the abundance of Bacteroidetes (phylum) was markedly reduced in the colon and feces of the PDCoV-infected piglets (p < .01) when compared to those of the healthy piglets. Furthermore, microbial function prediction indicated that the changes in the intestinal flora also affected the nucleotide transport and metabolism, defense, translation, and transcription function of the intestinal microbiota. The current study provides new insight into the pathology and physiology of PDCoV.