Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178120

RESUMEN

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Neuronas/metabolismo , ARN de Helminto , ARN Pequeño no Traducido , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
2.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505133

RESUMEN

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Asunto(s)
Genética de Población/métodos , Patrón de Herencia , Plantas/genética , Espermatozoides/fisiología , Animales , Quimera , Mapeo Cromosómico , Femenino , Células Germinativas/fisiología , Heterocigoto , Depresión Endogámica , Masculino , Meiosis , Polen/genética , Autoincompatibilidad en las Plantas con Flores/genética , Razón de Masculinidad , Vertebrados/genética , Cigoto
3.
Biochemistry (Mosc) ; 89(8): 1429-1450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245454

RESUMEN

The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.


Asunto(s)
Epigénesis Genética , Plantas , Animales , Plantas/genética , Plantas/metabolismo , Metilación de ADN , Mutación , Histonas/metabolismo , Histonas/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
4.
J Anim Breed Genet ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808373

RESUMEN

In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (-0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.

5.
Br Poult Sci ; 65(4): 371-377, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38717938

RESUMEN

1. Non-coding RNAs, such as miRNAs, play a crucial role in chicken feather growth rate. However, circular RNA (circRNA) expression profiles in fast- and slow-feathering chickens that follow and do not follow Mendelian inheritance are unclear.2. The circRNA expression profiles was analysed by RNA sequencing of hair follicles of slow-feathering chickens that follow genetic rules and fast-feathering chickens that did not follow genetic rules. Differentially expressed circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was then constructed and the key factors and regulation mechanisms controlling feather growth rate were identified.3. The results revealed that 67 circRNAs were significantly differentially expressed in hens, including 22 up-regulated and 45 down-regulated circRNAs in non-Mendelian inheritance-mediated fast-feathering hens compared with Mendelian inheritance-mediated slow-feathering hens. In addition, 16 significantly differentially expressed circRNAs were identified in cockerels, including nine up-regulated and seven down-regulated circRNAs in non-Mendelian inheritance-mediated fast- compared with Mendelian inheritance-mediated slow-feathering cocks. Moreover, circRNA-mediated ceRNA regulation of hair follicle formation was particularly abundant in the Jak-STAT, Wnt and Toll-like receptor signalling pathways. Furthermore, circABI3BP was seen to be a crucial circRNA in regulating feather growth rate, by binding with gga-miR-1649-5p to regulate SSTR2 expression.4. In conclusion, this study analysed circRNA expression profiles in fast- and slow-feathering chickens that follow and do not follow Mendelian inheritance, which laid the foundation for understanding the role of circRNA in chicken feather growth rate.


Asunto(s)
Pollos , Plumas , ARN Circular , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Plumas/crecimiento & desarrollo , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica/veterinaria , Transcriptoma
6.
J Physiol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936475

RESUMEN

'Weismann's barrier' has restricted theories of heredity to the transmission of genomic variation for the better part of a century. However, the discovery and elucidation of epigenetic mechanisms of gene regulation such as DNA methylation and histone modifications has renewed interest in studies on the inheritance of acquired traits and given them mechanistic plausibility. Although it is now clear that these mechanisms allow many environmentally acquired traits to be transmitted to the offspring, how phenotypic information is communicated from the body to its gametes has remained a mystery. Here, we discuss recent evidence that such communication is mediated by somatic RNAs that travel inside extracellular vesicles to the gametes where they reprogram the offspring epigenome and phenotype. How gametes learn about bodily changes has implications not only for the clinic, but also for evolutionary theory by bringing together intra- and intergenerational mechanisms of phenotypic plasticity and adaptation.

7.
Ecol Lett ; 26 Suppl 1: S62-S80, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37840022

RESUMEN

Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.


Asunto(s)
Tecnología de Genética Dirigida , Evolución Biológica , Alelos , Retroalimentación , Dinámica Poblacional
8.
Chromosome Res ; 30(2-3): 255-272, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35416568

RESUMEN

Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.


Asunto(s)
Pájaros Cantores , Animales , Cromosomas/genética , ADN , Sueños , Células Germinativas , Filogenia , Pájaros Cantores/genética
9.
J Exp Bot ; 72(4): 1104-1118, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33130897

RESUMEN

Microbial symbiosis in legumes is achieved through nitrogen-fixing root nodules, and these are important for sustainable agriculture. The molecular mechanisms underlying development of root nodules in polyploid legume crops are largely understudied. Through map-based cloning and QTL-seq approaches, we identified a pair of homoeologous GRAS transcription factor genes, Nodulation Signaling Pathway 2 (AhNSP2-B07 or Nb) and AhNSP2-A08 (Na), controlling nodulation in cultivated peanut (Arachis hypogaea L.), an allotetraploid legume crop, which exhibited non-Mendelian and Mendelian inheritance, respectively. The segregation of nodulation in the progeny of Nananbnb genotypes followed a 3:1 Mendelian ratio, in contrast to the 5:3~1:1 non-Mendelian ratio for nanaNbnb genotypes. Additionally, a much higher frequency of the nb allele (13%) than the na allele (4%) exists in the peanut germplasm collection, suggesting that Nb is less essential than Na in nodule organogenesis. Our findings reveal the genetic basis of naturally occurred non-nodulating peanut plants, which can be potentially used for nitrogen fixation improvement in peanut. Furthermore, the results have implications for and provide insights into the evolution of homoeologous genes in allopolyploid species.


Asunto(s)
Arachis , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta/genética , Factores de Transcripción/fisiología , Arachis/genética , Arachis/fisiología , Fijación del Nitrógeno , Proteínas de Plantas/genética , Polimorfismo Genético , Nódulos de las Raíces de las Plantas/genética , Simbiosis , Factores de Transcripción/genética
10.
Curr Genet ; 66(5): 889-894, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32296868

RESUMEN

Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.


Asunto(s)
Adaptación Fisiológica , Senescencia Celular , ADN Circular/genética , ADN Circular/metabolismo , Células Eucariotas/fisiología , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Variación Genética , Humanos , Recombinación Genética , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA