Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688133

RESUMEN

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Cromatina , Exones , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN
2.
Liver Int ; 44(9): 2174-2190, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38813953

RESUMEN

Porphyrias are rare, mostly inherited disorders resulting from altered activity of specific enzymes in the haem synthesis pathway that lead to accumulation of pathway intermediates. Photocutaneous symptoms occur when excess amounts of photoreactive porphyrins circulate in the blood to the skin, whereas increases in potentially neurotoxic porphyrin precursors are associated with neurovisceral symptoms. Current therapies are suboptimal and their mechanisms are not well established. As described here, emerging therapies address underlying disease mechanisms by introducing a gene, RNA or other specific molecule with the potential to cure or slow progression of the disease. Recent progress in nanotechnology and nanoscience, particularly regarding particle design and formulation, is expanding disease targets. More secure and efficient drug delivery systems have extended our toolbox for transferring specific molecules, especially into hepatocytes, and led to proof-of-concept studies in animal models. Repurposing existing drugs as molecular chaperones or haem synthesis inhibitors is also promising. This review summarizes key examples of these emerging therapeutic approaches and their application for hepatic and erythropoietic porphyrias.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Animales , Porfirias/terapia , Hemo/biosíntesis , Hemo/metabolismo , Porfirinas/uso terapéutico , Terapia Genética , Porfiria Eritropoyética/terapia , Porfiria Eritropoyética/genética , Porfirias Hepáticas/terapia , Reposicionamiento de Medicamentos
3.
Mol Ther ; 30(3): 1329-1342, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774753

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a severe liver disorder characterized by triglyceride accumulation, severe inflammation, and fibrosis. With the recent increase in prevalence, NASH is now the leading cause of liver transplant, with no approved therapeutics available. Although the exact molecular mechanism of NASH progression is not well understood, a widely held hypothesis is that fat accumulation is the primary driver of the disease. Therefore, diacylglycerol O-acyltransferase 2 (DGAT2), a key enzyme in triglyceride synthesis, has been explored as a NASH target. RNAi-based therapeutics is revolutionizing the treatment of liver diseases, with recent chemical advances supporting long-term gene silencing with single subcutaneous administration. Here, we identified a hyper-functional, fully chemically stabilized GalNAc-conjugated small interfering RNA (siRNA) targeting DGAT2 (Dgat2-1473) that, upon injection, elicits up to 3 months of DGAT2 silencing (>80%-90%, p < 0.0001) in wild-type and NSG-PiZ "humanized" mice. Using an obesity-driven mouse model of NASH (ob/ob-GAN), Dgat2-1473 administration prevents and reverses triglyceride accumulation (>85%, p < 0.0001) without increased accumulation of diglycerides, resulting in significant improvement of the fatty liver phenotype. However, surprisingly, the reduction in liver fat did not translate into a similar impact on inflammation and fibrosis. Thus, while Dgat2-1473 is a practical, long-lasting silencing agent for potential therapeutic attenuation of liver steatosis, combinatorial targeting of a second pathway may be necessary for therapeutic efficacy against NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/genética , Obesidad/terapia , Tratamiento con ARN de Interferencia , Triglicéridos/metabolismo , Triglicéridos/uso terapéutico
4.
Med Res Rev ; 41(5): 2634-2655, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638429

RESUMEN

Motor neuron disorders are a group of neurodegenerative diseases characterized by muscle weakness, loss of ambulation, respiratory insufficiency, leading to an early death. Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis are the most common and fatal motor neuron diseases. The last 3 years became very successful for novel gene therapy approaches in SMA in infants. Two innovative drugs-nusinersen (Spinraza) and onasemnogene abeparvovec (Zolgensma) have been approved by health authorities. The numerous molecular and genetic overlaps between different neurodegenerative diseases are of great importance in the development of innovative therapeutic strategies, including viral vector therapy and RNA modulating approaches.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Terapia Genética , Vectores Genéticos , Humanos , Lactante , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia
5.
Proc Natl Acad Sci U S A ; 115(49): 12489-12494, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446612

RESUMEN

Genetic treatments of renal ciliopathies leading to cystic kidney disease would provide a real advance in current therapies. Mutations in CEP290 underlie a ciliopathy called Joubert syndrome (JBTS). Human disease phenotypes include cerebral, retinal, and renal disease, which typically progresses to end stage renal failure (ESRF) within the first two decades of life. While currently incurable, there is often a period of years between diagnosis and ESRF that provides a potential window for therapeutic intervention. By studying patient biopsies, patient-derived kidney cells, and a mouse model, we identify abnormal elongation of primary cilia as a key pathophysiological feature of CEP290-associated JBTS and show that antisense oligonucleotide (ASO)-induced splicing of the mutated exon (41, G1890*) restores protein expression in patient cells. We demonstrate that ASO-induced splicing leading to exon skipping is tolerated, resulting in correct localization of CEP290 protein to the ciliary transition zone, and restoration of normal cilia length in patient kidney cells. Using a gene trap Cep290 mouse model of JBTS, we show that systemic ASO treatment can reduce the cystic burden of diseased kidneys in vivo. These findings indicate that ASO treatment may represent a promising therapeutic approach for kidney disease in CEP290-associated ciliopathy syndromes.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cerebelo/anomalías , Exones/genética , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Proteínas Nucleares/genética , Retina/anomalías , Adolescente , Animales , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Células Cultivadas , Cerebelo/patología , Proteínas del Citoesqueleto , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Riñón/citología , Masculino , Ratones , Mutación , Retina/patología
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769025

RESUMEN

Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding "on-target" and "off-target" side effects. In this "ncRNA in therapeutics" issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.


Asunto(s)
Ácidos Nucleicos/genética , ARN no Traducido/genética , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Sistemas de Liberación de Medicamentos/métodos , Humanos
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926102

RESUMEN

Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye's accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.


Asunto(s)
Amaurosis Congénita de Leber/genética , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Dependovirus/genética , Proteínas del Ojo/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Humanos , Amaurosis Congénita de Leber/terapia , Mutación , ARN , Retina/efectos de los fármacos , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo
8.
J Hepatol ; 71(2): 422-433, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102718

RESUMEN

Porphyrias are rare inherited disorders caused by specific enzyme dysfunctions in the haem synthesis pathway, which result in abnormal accumulation of specific pathway intermediates. The symptoms depend upon the chemical characteristics of these substances. Porphyrins are photoreactive and cause photocutaneous lesions on sunlight-exposed areas, whereas accumulation of porphyrin precursors is related to acute neurovisceral attacks. Current therapies are suboptimal and mostly address symptoms rather than underlying disease mechanisms. Advances in the understanding of the molecular bases and pathogenesis of porphyrias have paved the way for the development of new therapeutic strategies. In this Clinical Trial Watch we summarise the basic principles of these emerging approaches and what is currently known about their application to porphyrias of hepatic origin or with hepatic involvement.


Asunto(s)
Acetilgalactosamina/análogos & derivados , Trasplante de Médula Ósea/métodos , Resina de Colestiramina/uso terapéutico , Terapia Genética/métodos , Trasplante de Hígado/métodos , Porfirias Hepáticas/tratamiento farmacológico , Porfirias Hepáticas/cirugía , Pirrolidinas/uso terapéutico , Receptor de Melanocortina Tipo 1/agonistas , alfa-MSH/análogos & derivados , 5-Aminolevulinato Sintetasa/antagonistas & inhibidores , Acetilgalactosamina/farmacología , Acetilgalactosamina/uso terapéutico , Hemo/biosíntesis , Humanos , Hígado/metabolismo , Porfirias Hepáticas/clasificación , Porfirias Hepáticas/patología , Porfirinas/metabolismo , Pirrolidinas/farmacología , alfa-MSH/uso terapéutico
9.
Mov Disord ; 34(8): 1112-1119, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283857

RESUMEN

Currently, few disease-modifying therapies exist for degenerative movement disorders. Antisense oligonucleotides are small DNA oligonucleotides, usually encompassing ∼20 base pairs, that can potentially target any messenger RNA of interest. Antisense oligonucleotides often contain modifications to the phosphate backbone, the sugar moiety, and the nucleotide base. The development of antisense oligonucleotide therapies spinal muscular atrophy and Duchenne muscular dystrophy suggest potentially wide-ranging therapeutic applications for antisense oligonucleotides in neurology. Successes with these two diseases have heightened interest in academia and the pharmaceutical industry to develop antisense oligonucleotides for several movement disorders, including, spinocerebellar ataxias, Huntington's disease, and Parkinson's disease. Compared to small molecules, antisense oligonucleotide-based therapies have an advantage because the target disease gene sequence is the immediate path to identifying the therapeutically effective complementary antisense oligonucleotide. In this review we describe the different types of antisense oligonucleotide chemistries and their potential use for the treatment of human movement disorders. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Morfolinos/uso terapéutico , Trastornos del Movimiento/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Proteínas tau/genética
10.
Mol Pharm ; 16(11): 4542-4550, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31596588

RESUMEN

Replacement therapy with tumor suppressive microRNA (TS-miRNA) might be the next-generation oligonucleotide therapy; however, a novel drug delivery system (DDS) is required. Recently, we developed the cell-penetrating peptide, model amphipathic peptide with α-aminoisobutyric acid (MAP(Aib)), as a carrier for oligonucleotide delivery to cells. In this study, we examined whether a modified MAP(Aib) analogue, MAP(Aib)-cRGD, could be a DDS for TS-miRNA replacement therapy. MIR145-5p, a representative TS-miRNA especially in colorectal cancer, was selected. The MAP(Aib)-cRGD dose was adjusted for MIR145-5p delivery to cells using peripheral blood mononuclear cells and degradation analysis. AlexaFluor488-labeled MIR145-5p incorporation into cells and negative regulation of MIR145-5p-targeting genes demonstrated MAP(Aib)-cRGD's functionality as a miRNA DDS. Treating MIR145-5p with MAP(Aib)-cRGD also revealed various anticancer effects, such as cell viability, invasion inhibition, and apoptosis induction in WiDr cells. Altogether, these findings suggest that MAP(Aib)-cRGD could be a DDS for TS-miRNA replacement therapy, but in vivo investigations are required.


Asunto(s)
Ácidos Aminoisobutíricos/química , Péptidos de Penetración Celular/química , MicroARNs/química , Péptidos Cíclicos/química , Línea Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , MicroARNs/farmacología , Oligonucleótidos/química
11.
J Allergy Clin Immunol ; 142(3): 715-726, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30195377

RESUMEN

The analysis of epigenetic modifications in allergic diseases has recently attracted substantial interest because epigenetic modifications can mediate the effects of the environment on the development of or protection from allergic diseases. Furthermore, recent research has provided evidence for an altered epigenomic landscape in disease-relevant cell populations. Although still in the early phase, epigenetic modifications, particularly DNA methylation and microRNAs, might have potential for assisting in the stratification of patients for treatment and complement or replace in the future biochemical or clinical tests. The first epigenetic biomarkers correlating with the successful outcome of immunotherapy have been reported, and with personalized treatment options being rolled out, epigenetic modifications might well play a role in monitoring or even predicting the response to tailored therapy. However, further studies in larger cohorts with well-defined phenotypes in specific cell populations need to be performed before their implementation. Furthermore, the epigenome provides an interesting target for therapeutic intervention, with microRNA mimics, inhibitors, and antisense oligonucleotides being evaluated in clinical trials in patients with other diseases. Selection or engineering of populations of extracellular vesicles and epigenetic editing represent novel tools for modulation of the cellular phenotype and responses, although further technological improvements are required. Moreover, interactions between the host epigenome and the microbiome are increasingly recognized, and interventions of the microbiome could contribute to modulation of the epigenome with a potential effect on the overall goal of prevention of allergic diseases.


Asunto(s)
Epigénesis Genética , Hipersensibilidad/genética , Animales , Metilación de ADN , Epigenómica , Vesículas Extracelulares , Humanos , MicroARNs
12.
J Autoimmun ; 89: 41-52, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29183643

RESUMEN

In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory.


Asunto(s)
Antagomirs/genética , Colitis/inmunología , Colon/inmunología , Inflamación/inmunología , MicroARNs/genética , Células TH1/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
13.
Adv Exp Med Biol ; 983: 189-194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28639200

RESUMEN

The prognosis for hepatocellular carcinoma (HCC) remains poor and has not improved in over two decades. Most patients with advanced HCC who are not eligible for surgery have limited treatment options due to poor liver function or large, unresectable tumors. Although sorafenib is the standard-of-care treatment for these patients, only a small number respond. For the remaining, the outlook remains bleak. A better approach to target "undruggable" molecular pathways that reverse HCC is therefore urgently needed. Small activating RNAs (saRNAs) may provide a novel strategy to activate expression of genes that become dysregulated in chronic disease. The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα), a critical regulator of hepatocyte function, is suppressed in many advanced liver diseases. By using an saRNA to activate C/EBPα, we can exploit the cell's own transcription machinery to enhance gene expression without relying on exogenous vectors that have been the backbone of gene therapy. saRNAs do not integrate into the host genome and can be modified to avoid immune stimulation. In preclinical models of liver disease, treatment with C/EBPα saRNA has shown reduction in tumor volume and improvement in serum markers of essential liver function such as albumin, bilirubin, aspartate aminotransferase (AST), and alanine transaminase (ALT). This saRNA that activates C/EBPα for advanced HCC is the first saRNA therapy to have entered a human clinical trial. The hope is that this new tool will help break the dismal 20-year trend and provide a more positive prognosis for patients with severe liver disease.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , ARN Pequeño no Traducido/uso terapéutico , Humanos , Hígado
14.
Int J Cancer ; 139(2): 433-45, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26939718

RESUMEN

The objective of this study was to examine the implication of Y-box-binding protein-1 (YB-1) for the aggressive phenotypes, prognosis and therapeutic target in pancreatic ductal adenocarcinoma (PDAC). YB-1 expression in PDAC, pancreatic intraepithelial neoplasia (PanIN) and normal pancreas specimens was evaluated by immunohistochemistry, and its correlation with clinicopathological features was assessed in patients with PDAC. The effects of YB-1 on proliferation, invasion and expressions of cell cycle-related proteins and matrix metalloproteinases (MMPs) were analyzed by WST-8, cell cycle and Matrigel invasion assays, Western blotting and quantitative RT-PCR in PDAC cells transfected with YB-1-siRNAs. To verify the significance of YB-1 for tumor progression in vivo, the growth and metastasis were monitored after intrasplenic implantation of ex vivo YB-1 siRNA-transfected PDAC cells, and YB-1-targeting antisense oligonucleotides were intravenously administered in nude mice harboring subcutaneous tumor. The intensity of YB-1 expression and positivity of nuclear YB-1 expression were higher in PDAC than PanIN and normal pancreatic tissues. Nuclear YB-1 expression was significantly associated with dedifferentiation, lymphatic/venous invasion and unfavorable prognosis. YB-1 knockdown inhibited cell proliferation via cell cycle arrest by S-phase kinase-associated protein 2 downregulation and consequent p27 accumulation, and decreased the invasion due to downregulated membranous-type 2 MMP expression in PDAC cells. Tumor growth and liver metastasis formation were significantly suppressed in nude mice after implantation of YB-1-silenced PDAC cells, and the YB-1 targeting antisense oligonucleotide significantly inhibited the growth of subcutaneous tumors. In conclusion, YB-1 may be involved in aggressive natures of PDAC and a promising therapeutic target.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Proteína 1 de Unión a la Caja Y/genética , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/genética , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Ciclo Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias Pancreáticas/patología , Pronóstico
15.
Expert Opin Emerg Drugs ; 20(3): 353-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25920617

RESUMEN

Spinal muscular atrophy (SMA), one of the most frequent and devastating genetic disorders causing neuromuscular degeneration, has reached the forefront of clinical translation. The quite unique genetic situation of SMA patients, who lack functional SMN1 but carry the misspliced SMN2 copy gene, creates the possibility of correcting SMN2 splicing by antisense oligonucleotides or drugs. Both strategies showed impressive results in pre-clinical trials and are now in Phase II-III clinical trials. SMN gene therapy approaches using AAV9-SMN vectors are also highly promising and have entered a Phase I clinical trial. However, careful analysis of SMA animal models and patients has revealed some limitations that need to be taken very seriously, including: i) a limited time-window for successful therapy delivery, making neonatal screening of SMA mandatory; ii) multi-organ impairment, requiring systemic delivery of therapies; and iii) a potential need for combined therapies that both increase SMN levels and target pathways that preserve/rescue motor neuron function over the lifespan. Meeting these challenges will likely be crucial to cure SMA, instead of only ameliorating symptoms, particularly in its most severe form. This review discusses therapies currently in clinical trials, the hopes for SMA therapy, and the potential limitations of these new approaches.


Asunto(s)
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Recién Nacido , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
16.
Beilstein J Org Chem ; 10: 1840-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25161745

RESUMEN

We present the synthesis of the two novel nucleosides iso-tc-T and bc(en)-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6'-C7' within the carbocyclic ring is planarized by either the presence of a C6'-C7' double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2'-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bc(en)-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3'-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that T m data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.

17.
Int J Nanomedicine ; 19: 9741-9755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39329032

RESUMEN

Introduction: Oligonucleotide (ON) therapy is a promising treatment for a wide range of complex genetic disorders, but inefficient intracellular ON delivery has hindered clinical translation. Hollow silica nanoparticles (HSN) hold potential as effective ON delivery vehicles since ON can be encapsulated in the hollow core in situ where they are protected from degradation by eg nucleases. However, HSN must be modified to allow degradation and subsequent (sub)cellular ON release. In this report, we investigated the use of ion and fluorescent dye co-doping in the HSN silica matrix to enable HSN degradability and in vitro visualization. Methods: HSN were core encapsulated with ON, doped with Ca2+, Cu2+, Zn2+, Se2+ and Sr2+ ions and co-condensed with rhodamine b isothiocyanate (RITC) by a modified reverse microemulsion method. HSN were physiochemically characterized and their biological activity such as uptake and toxicity were evaluated in mesenchymal stem cells (hMSCs). Results: We successfully doped HSN with RITC and Ca2+, Cu2+, Zn2+ and Sr2+ ions. We observed that doping HSN with Ca2+ and Sr2+ enhanced RITC incorporation while ON encapsulation in HSN increased Cu2+ and Zn2+ doping efficiency. Moreover, our dual-doped HSN demonstrated controlled ON release in the presence of intracellular mimicking levels of glutathione (GSH) and limited release in the absence of GSH over 14 days. HSN were biocompatible in hMSCs up to 300 µg/mL except for Cu2+ doped HSNs which were cytotoxic even at ~10 µg/mL. HSN uptake was influenced by the dopant ion, DNA encapsulation, and HSN concentration, where Zn-HSN showed the lowest and Sr-HSN and Se-HSND, the highest uptake in hMSCs. Conclusion: We report a straightforward one-pot procedure to create ion and fluorescent dye co-doped HSN that can efficiently incorporate ON, as promising new gene vectors.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Rodaminas , Dióxido de Silicio , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Dióxido de Silicio/química , Humanos , Nanopartículas/química , Rodaminas/química , Rodaminas/farmacocinética , Oligonucleótidos/química , Oligonucleótidos/farmacología , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Iones/química , Zinc/química , Zinc/farmacología , Colorantes Fluorescentes/química , Calcio/química
18.
Expert Opin Pharmacother ; 25(5): 571-584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653731

RESUMEN

INTRODUCTION: Tauopathies are a spectrum of clinicopathological neurodegenerative disorders with increased aggregates included in glia and/or neurons of hyperphosphorylated insoluble tau protein, a microtubule-associated protein. Progressive supranuclear palsy (PSP) is an atypical dopaminergic-resistant parkinsonian syndrome, considered as a primary tauopathy with possible alteration of tau isoform ratio, and tau accumulations characterized by 4 R tau species as the main neuropathological lesions. AREAS COVERED: In the present review article, we analyzed and discussed viable disease-modifying and some symptomatic pharmacological therapeutics for PSP syndrome (PSPS). EXPERT OPINION: Pharmacological therapy for PSPS may interfere with the aggregation process or promote the clearance of abnormal tau aggregates. A variety of past and ongoing disease-modifying therapies targeting tau in PSPS included genetic, microtubule-stabilizing compounds, anti-phosphorylation, and acetylation agents, antiaggregant, protein removal, antioxidant neuronal and synaptic growth promotion therapies. New pharmacological gene-based approaches may open alternative prevention pathways for the deposition of abnormal tau in PSPS such as antisense oligonucleotide (ASO)-based drugs. Moreover, kinases and ubiquitin-proteasome systems could also be viable targets.


Asunto(s)
Parálisis Supranuclear Progresiva , Proteínas tau , Humanos , Parálisis Supranuclear Progresiva/tratamiento farmacológico , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Animales , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Tauopatías/genética , Tauopatías/metabolismo
19.
Neurol Res Pract ; 6(1): 11, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383503

RESUMEN

5q-associated spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are two distinct neurological disorders leading to degeneration of lower motor neurons. The antisense oligonucleotides (ASOs) nusinersen and tofersen are novel disease-modifying agents for these diseases, respectively. In the context of ASO treatment, the cytological characteristics and composition of cerebrospinal fluid (CSF) have recently garnered particular interest. This report presents a case series of CSF cytology findings in two patients with SMA and ALS revealing comparable unspecified macrophage inclusions following treatment initiation with nusinersen and tofersen. Yet, the presence of these "asophages" in the treatment course of two different ASOs is of unclear significance. While both treatments have been well tolerated, this phenomenon warrants attention, given the long-term nature of these treatments.

20.
Bioact Mater ; 33: 396-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059120

RESUMEN

Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA