Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Mater ; 36(1): e2309645, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018327

RESUMEN

The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.

2.
ACS Appl Mater Interfaces ; 11(3): 3196-3206, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30584839

RESUMEN

Owing to their abilities to assemble and organize a large number of redox and photoactive components in highly ordered periodic fashion, crystalline porous metal-organic frameworks (MOFs) have the potential to execute myriad complex functions, including charge transport and light to electrical energy conversion when the required conditions are fulfilled. Herein, we demonstrate an unprecedented spontaneous solvothermal growth of precisely [100]-oriented pillared porphyrin framework-11 (PPF-11) films featuring vertically aligned Zn-tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) walls and horizontally aligned 2,2'-dimethyl-4,4'-bipyridine beams attached to annealed ZnO-fluorine-doped tin oxide (FTO) surfaces and their remarkable photovoltaic performance in liquid-junction solar cells. The [100]-oriented PPF-11/ZnO-FTO photoanodes displayed excellent photovoltaic response (short-circuit current ( JSC): 4.65 mA/cm2, open-circuit voltage ( VOC): 470 mV, power conversion efficiency: 0.86%) that easily outperformed all control devices as well as previously reported porphyrin and Ru(bpy)32+-based visible light-harvesting MOFs with 10-1000 times greater photocurrent density and 2-375 times higher efficiency. The superior photovoltaic behavior of [100]-oriented PPF-11/ZnO films compared to epitaxially grown MOF thin films on insulating self-assembled monolayers and drop-cast PPF films with different orientations can be attributed to several factors, including better charge separation, transport, and injection capabilities of the former. The noncatenated PPF-11 was able to host electron-deficient C60 guests, filling in nearly half of its cavities and engage them in ZnTCPP/C60 charge-transfer interaction. However, the C60-doped PPF-11/ZnO films displayed much weaker photovoltaic response than undoped [100]-oriented PPF-11/ZnO films presumably due to exclusion of I-/I3- electrolyte from the C60-occupied cavities and the inability of isolated C60 guests to support long-range charge movement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA