Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.604
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
EMBO J ; 41(23): e111239, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278281

RESUMEN

Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.


Asunto(s)
Histonas , Osteogénesis , Ratones , Animales , Osteogénesis/fisiología , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Diferenciación Celular/fisiología , Mitocondrias/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Cromatina/metabolismo , Células Cultivadas
2.
Am J Hum Genet ; 110(4): 638-647, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990086

RESUMEN

Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common intractable disease that causes spinal stenosis and myelopathy. We have previously conducted genome-wide association studies for OPLL and identified 14 significant loci, but their biological implications remain mostly unclear. Here, we examined the 12p11.22 locus and identified a variant in the 5' UTR of a novel isoform of CCDC91 that was associated with OPLL. Using machine learning prediction models, we determined that higher expression of the novel CCDC91 isoform was associated with the G allele of rs35098487. The risk allele of rs35098487 showed higher affinity in the binding of nuclear proteins and transcription activity. Knockdown and overexpression of the CCDC91 isoform in mesenchymal stem cells and MG-63 cells showed paralleled expression of osteogenic genes, including RUNX2, the master transcription factor of osteogenic differentiation. The CCDC91 isoform directly interacted with MIR890, which bound to RUNX2 and decreased RUNX2 expression. Our findings suggest that the CCDC91 isoform acts as a competitive endogenous RNA by sponging MIR890 to increase RUNX2 expression.


Asunto(s)
Osificación del Ligamento Longitudinal Posterior , Osteogénesis , Humanos , Osteogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Estudio de Asociación del Genoma Completo , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/metabolismo , ARN no Traducido
3.
Proc Natl Acad Sci U S A ; 120(1): e2203779120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577075

RESUMEN

Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones. Deletion of Igf1 from BMSCs by Lepr-Cre leads to decreased bone formation, impaired bone regeneration, and increased BM adipogenesis. Importantly, reduction of BMSC-derived IGF-1 contributes to fasting-induced marrow fat accumulation. In contrast, deletion of Igf1 from MKs/PLTs by Pf4-Cre leads to reduced bone formation and regeneration without affecting BM adipogenesis. To our surprise, MKs/PLTs are also an important source of systemic IGF-1. Platelet-rich plasma (PRP) from Pf4-Cre; Igf1f/fmice showed compromised osteogenic potential both in vivo and in vitro, suggesting that MK/PLT-derived IGF-1 underlies the therapeutic effects of PRP. Taken together, this study identifies BMSCs and MKs/PLTs as two important sources of IGF-1 that coordinate to maintain and regenerate the adult skeleton, highlighting reciprocal regulation between the hematopoietic and skeletal systems.


Asunto(s)
Médula Ósea , Factor I del Crecimiento Similar a la Insulina , Ratones , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Diferenciación Celular , Plaquetas/metabolismo , Osteogénesis/genética , Células de la Médula Ósea/metabolismo , Esqueleto
4.
Proc Natl Acad Sci U S A ; 120(22): e2220159120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216542

RESUMEN

Osteolectin is a recently identified osteogenic growth factor that binds to Integrin α11 (encoded by Itga11), promoting Wnt pathway activation and osteogenic differentiation by bone marrow stromal cells. While Osteolectin and Itga11 are not required for the formation of the skeleton during fetal development, they are required for the maintenance of adult bone mass. Genome-wide association studies in humans reported a single-nucleotide variant (rs182722517) 16 kb downstream of Osteolectin associated with reduced height and plasma Osteolectin levels. In this study, we tested whether Osteolectin promotes bone elongation and found that Osteolectin-deficient mice have shorter bones than those of sex-matched littermate controls. Integrin α11 deficiency in limb mesenchymal progenitors or chondrocytes reduced growth plate chondrocyte proliferation and bone elongation. Recombinant Osteolectin injections increased femur length in juvenile mice. Human bone marrow stromal cells edited to contain the rs182722517 variant produced less Osteolectin and underwent less osteogenic differentiation than that of control cells. These studies identify Osteolectin/Integrin α11 as a regulator of bone elongation and body length in mice and humans.


Asunto(s)
Condrocitos , Osteogénesis , Adulto , Ratones , Animales , Humanos , Condrocitos/metabolismo , Osteogénesis/fisiología , Placa de Crecimiento , Estudio de Asociación del Genoma Completo , Huesos , Diferenciación Celular , Integrinas/metabolismo , Proliferación Celular
5.
J Biol Chem ; : 107941, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39481602

RESUMEN

HDAC4 is a class II histone deacetylation protein with a well-characterized role in chondrocyte differentiation and skeletal development, and dysregulated expression or haploinsufficiency of Hdac4 leads to skeletal formation and malformation disorders. The early lethality of hdac4 ablation mice hindered further investigation of its role in postnatal bone growth and development. Therefore, this study aims to investigate the significant role of Hdac4 in postnatal endochondral bone development using two mouse models with conditional deletion of Hdac4 in Sp7-expressing osteoprogenitors or chondrocytes and monitored postnatal bone development. The phenotype of Acan-CreERT2; Hdac4fl/fl mice largely resembled that of conventional Hdac4-/- mice. But phenotypic characterizations of mice with Hdac4 inactivation in Sp7-expressing osteoprogenitors (Sp7-Cre; Hdac4fl/fl) showed dwarfism with body and limb shortening and remarkable skeletal defects. Micro-computed tomography analysis of tibias further demonstrated that loss of Hdac4 expression impaired bone formation and microarchitecture, mainly characterized by dysplasia of trabecular and cortical bone in young mice. Our in vivo and in vitro data support a crucial role for Hdac4 in regulating osteoblast proliferation and differentiation, bone matrix protein production, angiogenesis, and ultimately trabecular and cortical bone formation. Moreover, RNA-seq analysis implicated Hdac4 in the regulation of key genes and pathways necessary to affect the accumulation of extracellular matrix, biological processes related to signal transduction, and skeletal growth. Collectively, our data show that postnatal expression of Hdac4 in Sp7-expressing osteoprogenitors provides essential regulatory oversight of endochondral bone formation, bone morphology, and homeostasis.

6.
Stem Cells ; 42(10): 861-873, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39169713

RESUMEN

Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affects the dental stromal tissue homeostasis and impairs the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated ß-galactosidase (SA-ß-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mammalian target of rapamycin (mTOR) signaling pathway (ILK, MAPK3, mTOR, STAT1, and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-ß-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Pulpa Dental , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Células Madre , Serina-Treonina Quinasas TOR , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Senescencia Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Adulto Joven , Ratas , Masculino , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Niño
7.
Stem Cells ; 42(9): 821-829, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38864549

RESUMEN

SIRT6 owns versatile types of enzymatic activities as a multitasking protein, including ribosyltransferase and deacetylase. To investigate the epigenetic regulations of SIRT6 on MSC fate determination via histone deacetylation, we used allosteric small molecules specifically controlling its histone 3 deacetylation activities. Results showed that enhanced deacetylation of SIRT6 promoted the ossific lineage commitment of MSC and finally achieved anabolic effects on hard tissues. Mechanistically, H3K9ac and H3K56ac, governed by SIRT6, in MSC orchestrated the transcriptions of crucial metabolic genes, mediating MSC fate determination. Most importantly, our data evidenced that modulating the epigenetic regulations of SIRT6, specifically via enhancing its deacetylation of H3K9ac and H3K56ac, was a promising choice to treat bone loss diseases and promote dentin regeneration. In this study, we revealed the specific roles of SIRT6's histone modification in MSC fate determination. These findings endow us with insights on SIRT6 and the promising therapeutic choices through SIRT6's epigenetic functions for hard tissues regeneration.


Asunto(s)
Epigénesis Genética , Células Madre Mesenquimatosas , Sirtuinas , Sirtuinas/metabolismo , Sirtuinas/genética , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Ratones , Histonas/metabolismo , Humanos , Acetilación
8.
FASEB J ; 38(9): e23657, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713087

RESUMEN

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. In vitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. In vivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.


Asunto(s)
Adipogénesis , Carboxipeptidasas , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Osteogénesis , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Diferenciación Celular , Proteínas Ligadas a GPI , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metaloendopeptidasas , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Transcriptoma
9.
FASEB J ; 38(14): e23810, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39042586

RESUMEN

Osteofibrous dysplasia (OFD) is a rare, benign, fibro-osseous lesion that occurs most commonly in the tibia of children. Tibial involvement leads to bowing and predisposes to the development of a fracture which exhibit significantly delayed healing processes, leading to prolonged morbidity. We previously identified gain-of-function mutations in the MET gene as a cause for OFD. In our present study, we test the hypothesis that gain-of-function MET mutations impair bone repair due to reduced osteoblast differentiation. A heterozygous Met exon 15 skipping (MetΔ15-HET) mouse was created to imitate the human OFD mutation. The mutation results in aberrant and dysregulation of MET-related signaling determined by RNA-seq in the murine osteoblasts extracted from the wide-type and genetic mice. Although no gross skeletal defects were identified in the mice, fracture repair was delayed in MetΔ15-HET mice, with decreased bone formation observed 2-week postfracture. Our data are consistent with a novel role for MET-mediated signaling regulating osteogenesis.


Asunto(s)
Enfermedades del Desarrollo Óseo , Modelos Animales de Enfermedad , Displasia Fibrosa Ósea , Curación de Fractura , Osteogénesis , Proteínas Proto-Oncogénicas c-met , Animales , Ratones , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Curación de Fractura/genética , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Humanos , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Ósea/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Mutación , Diferenciación Celular , Ratones Endogámicos C57BL , Masculino
10.
FASEB J ; 38(19): e70082, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39344592

RESUMEN

Nasal obstruction leads to a hypoxia condition throughout the entire body. In this study, the unilateral nasal obstruction (UNO) mouse model was established by blocking the left nostril of mice. The aim of this study was to investigate the effects of UNO-induced hypoxia on mandibular condyle in juvenile (3-week-old), adolescent (6-week-old) and adult (12-week-old) male C57BL/6J mice from the perspective of H-type angiogenesis coupling osteogenesis. Firstly, UNO exerted a significant inhibitory effect on weight gain in mice of all ages. However, only in adolescent mice did UNO have an obvious detrimental effect on femoral bone mass accrual. Subsequently, micro-computed tomography (CT) analysis of mandibular condylar bone mass revealed that UNO significantly retarded condylar head volume gain but increased condylar head trabecular number (Tb.N) in juvenile and adolescent mice. Furthermore, UNO promoted the ratio of proliferative layer to cartilage layer in condylar cartilage and facilitated the chondrocyte-to-osteoblast transformation in juvenile and adolescent mice. Moreover, although UNO enhanced the positive expression of hypoxia-inducible factor (HIF)-1α in the condylar subchondral bone of mice in all ages, an increase in H-type vessels and Osterix+ cells was only detected in juvenile and adolescent mice. In summary, on the one hand, in terms of condylar morphology, UNO has a negative effect on condylar growth, hindering the increase in condylar head volume in juvenile and adolescent mice. However, on the other hand, in terms of condylar microstructure, UNO has a positive effect on condylar osteogenesis, promoting the increase of condylar Tb.N, chondrocyte-to-osteoblast transformation, HIF-1α expression, H-type angiogenesis and Osterix+ cells in juvenile and adolescent mice. Although the changes in condylar morphology and microstructure caused by UNO have not yet been fully elucidated, these findings improve our current understanding of the effects of UNO on condylar bone homeostasis.


Asunto(s)
Cóndilo Mandibular , Ratones Endogámicos C57BL , Obstrucción Nasal , Osteogénesis , Animales , Cóndilo Mandibular/patología , Cóndilo Mandibular/metabolismo , Ratones , Masculino , Osteogénesis/fisiología , Obstrucción Nasal/fisiopatología , Obstrucción Nasal/patología , Obstrucción Nasal/metabolismo , Neovascularización Fisiológica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Microtomografía por Rayos X , Condrocitos/metabolismo , Condrocitos/patología , Osteoblastos/metabolismo , Angiogénesis
11.
FASEB J ; 38(18): e70056, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39282872

RESUMEN

Distraction osteogenesis is widely used for bone tissue engineering. Mechanical stimulation plays a central role in the massive tissue regeneration observed during distraction osteogenesis. Although distraction osteogenesis has been a boon for patients with bone defects, we still have limited knowledge about the intrinsic mechanotransduction that converts physical forces into biochemical signals capable of inducing cell behavior changes and new tissue formation. In this review, we summarize the findings for mechanoresponsive factors, including cells, genes, and signaling pathways, during the distraction osteogenesis different phases. These elements function for coupling of osteogenesis and angiogenesis via the Integrin-FAK, TGF-ß/BMP, Wnt/ß-catenin, Hippo, MAPK, PI3K/Akt, and HIF-1α signaling pathways in a mechanoresponsive niche. The available evidence further suggests the existence of a balance between the epithelial-mesenchymal transition and mesenchymal-epithelial transition under hypoxic stress. We also briefly summarize the current in silico simulation algorithms and propose several future research directions that may advance understanding of distraction osteogenesis in the era of bioinformation, particularly the integration of artificial intelligence models with reliable single-cell RNA sequencing datasets. The objective of this review is to utilize established knowledge to further optimize existing distraction protocols and to identify potential therapeutic targets.


Asunto(s)
Mecanotransducción Celular , Osteogénesis por Distracción , Humanos , Osteogénesis por Distracción/métodos , Animales , Osteogénesis/fisiología , Regeneración Ósea/fisiología , Transducción de Señal , Ingeniería de Tejidos/métodos , Transición Epitelial-Mesenquimal/fisiología
12.
Exp Cell Res ; 439(1): 114096, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768700

RESUMEN

Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.


Asunto(s)
Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana , Macrófagos , Neovascularización Fisiológica , Osteogénesis , Humanos , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Macrófagos/metabolismo , Ratas , Células Endoteliales/metabolismo , Movimiento Celular , Ratas Sprague-Dawley , Regeneración Ósea/fisiología , Ratones , Células Cultivadas , Masculino , Angiogénesis
13.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429926

RESUMEN

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Asunto(s)
Regeneración Ósea , Inflamación , Células Madre Mesenquimatosas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Osteogénesis , Proteína Wnt4 , Células Madre Mesenquimatosas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Osteogénesis/genética , Regeneración Ósea/genética , Animales , Ratones , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Vía de Señalización Wnt , Masculino , Transcripción Genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Modelos Animales de Enfermedad
14.
Cell Mol Life Sci ; 81(1): 310, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066929

RESUMEN

Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.


Asunto(s)
Huesos , Músculo Esquelético , Humanos , Huesos/metabolismo , Huesos/patología , Músculo Esquelético/metabolismo , Animales , Osteogénesis/fisiología , Mecanotransducción Celular , Desarrollo de Músculos
15.
Cell Mol Life Sci ; 81(1): 436, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414635

RESUMEN

BACKGROUND: The ligamentum flavum (LF) is an important anatomical structure of the spine. Ossification of the LF (OLF) has become the leading cause of thoracic spinal stenosis. Circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification are reported to be associated with several human diseases. However, the role of circRNAs and m6A modification in the pathogenesis of OLF has not been fully investigated. Here, we aimed to explore the vital function of circRNAs and m6A modification in OLF. MATERIALS AND METHODS: We analysed the circRNA expression of 4 OLF tissues and 4 normal LF tissues using bioinformatic analysis and identified circCDK14 for further analysis. We investigated the effects of circCDK14 on the osteogenic differentiation of LF cells. We observed that circCDK14 regulated its target genes by binding to miRNAs as a miRNA sponge. Moreover, the circRNA pull-down assay indicated that RNA-binding proteins might regulate the expression of circCDK14 via m6A modification. RESULTS: CircCDK14 was significantly upregulated in OLF tissues compared to normal LF tissues. Overexpression of circCDK14 promoted the osteogenic differentiation of LF cells. Mechanistically, CircCDK14 promoted the expression of ALF transcription elongation Factor 4 (AFF4) by serving as a sponge for miR-93-5p. Moreover, Wilms tumour 1-associated protein (WTAP) increased the stability of circCDK14 via N6-methyladenosine modification. CONCLUSION: The m6A-modified CircCDK14 binding to miR-93-5p played an important role in the osteogenesis of LF cells by targeting AFF4, providing a promising therapeutic target for OLF.


Asunto(s)
Adenosina , Diferenciación Celular , Epigénesis Genética , Ligamento Amarillo , MicroARNs , Osteogénesis , ARN Circular , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Osteogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
16.
Cell Mol Life Sci ; 81(1): 260, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878096

RESUMEN

The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of ß-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.


Asunto(s)
Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Vía de Señalización Wnt , beta Catenina , Animales , Masculino , Ratones , Adipogénesis/genética , beta Catenina/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Osteogénesis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
17.
Differentiation ; 140: 100815, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39342657

RESUMEN

The Retinoblastoma (RB1) gene plays a pivotal role in osteogenic differentiation. Our previous study, employing temporal gene expression analysis using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), revealed the deregulation of osteogenic differentiation in patient-derived heterozygous RB1 mutant orbital adipose-derived mesenchymal stem cells (OAMSCs). The study revealed increased Alizarin Red staining, suggesting heightened mineralization without a corresponding increase in osteogenic lineage-specific gene expression. In this study, we performed high-throughput RNA sequencing on RB1+/+ and RB1+/- patient-derived OAMSCs differentiated towards the osteogenic lineage to investigate the pathways and molecular mechanisms. The pathway analysis revealed significant differences in cell proliferation, DNA repair, osteoblast differentiation, and cancer-related pathways in RB1+/- OAMSC-derived osteocytes. These findings were subsequently validated through functional assays. The study revealed that osteogenic differentiation is increased in RB1+/- cells, along with enhanced proliferation of the osteocytes. There were delayed but persistent DNA repair mechanisms in RB1+/- osteocytes, which were sufficient to maintain genomic integrity, thereby preventing or delaying the onset of tumors. This contrasts with our earlier observation of increased mineralization without corresponding gene expression changes, emphasizing the importance of high-throughput analysis over preselected gene set analysis in comprehending functional assay results.

18.
Eur Heart J ; 45(37): 3871-3885, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38976370

RESUMEN

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Histonas , Lumican , Osteogénesis , Animales , Calcinosis/genética , Calcinosis/patología , Calcinosis/metabolismo , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Lumican/metabolismo , Lumican/genética , Humanos , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Histonas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Ratones Noqueados , Masculino , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética
19.
Med Res Rev ; 44(4): 1867-1903, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421080

RESUMEN

Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.


Asunto(s)
Huesos , Humanos , Huesos/metabolismo , Animales
20.
Semin Cell Dev Biol ; 127: 17-36, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34949507

RESUMEN

Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.


Asunto(s)
Células Madre Pluripotentes , Huesos , Cartílago , Diferenciación Celular/fisiología , Humanos , Mesodermo , Cresta Neural , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA