Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 925
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(5): 1392-1412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044792

RESUMEN

The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.


Asunto(s)
Isomerasas Aldosa-Cetosa , Pyrus , Azúcares , Azúcares/metabolismo , Glucosa/metabolismo , Pyrus/metabolismo , Sacarosa/metabolismo , Fructosa/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Plant J ; 113(3): 626-642, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546867

RESUMEN

Stone cells are the brachysclereid cells in pear (Pyrus) fruit, consisting almost entirely of lignified secondary cell walls. They are distributed mainly near the fruit core and spread radially in the whole fruit. However, the development of stone cells has not been comprehensively characterized, and little is known about the regulation of stone cell formation at the transcriptomic, proteomic, and metabolomic levels. In the present study, we performed phenomic analysis on the stone cells and their associated vascular bundles distributed near the fruit cores. Transcriptomic, proteomic, and metabolomic analyses revealed a significant positive regulation of biological processes which contribute to the lignification and lignin deposition in stone cells near the fruit core, including sucrose metabolism and phenylalanine, tyrosine, tryptophan, and phenylalanine biosynthesis. We found many metabolites generated from the phenylpropanoid pathway contributing to the cell wall formation of stone cells near the fruit core. Furthermore, we identified a key transcription factor, PbbZIP48, which was highly expressed near the fruit core and was shown to regulate lignin biosynthesis in stone cells. In conclusion, the present study provides insight into the mechanism of lignified stone cell formation near the pear fruit core at multiple levels.


Asunto(s)
Frutas , Pyrus , Frutas/metabolismo , Pyrus/metabolismo , Lignina/metabolismo , Proteómica , Multiómica , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 116(3): 903-920, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549222

RESUMEN

Pear anthracnose caused by Colletotrichum fructicola is one of the main fungal diseases in all pear-producing areas. The degradation of ubiquitinated proteins by the 26S proteasome is a regulatory mechanism of eukaryotes. E3 ubiquitin ligase is substrate specific and is one of the most diversified and abundant enzymes in the regulation mechanism of plant ubiquitination. Although numerous studies in other plants have shown that the degradation of ubiquitinated proteins by the 26S proteasome is closely related to plant immunity, there are limited studies on them in pear trees. Here, we found that an E3 ubiquitin ligase, PbATL18, interacts with and ubiquitinates the transcription factor PbbZIP4, and this process is enhanced by C. fructicola infection. PbATL18 overexpression in pear callus enhanced resistance to C. fructicola infection, whereas PbbZIP4 overexpression increased sensitivity to C. fructicola infection. Silencing PbATL18 and PbbZIP4 in Pyrus betulaefolia seedlings resulted in opposite effects, with PbbZIP4 silencing enhancing resistance to C. fructicola infection and PbATL18 silencing increasing sensitivity to C. fructicola infection. Using yeast one-hybrid screens, an electrophoretic mobility shift assay, and dual-luciferase assays, we demonstrated that the transcription factor PbbZIP4 upregulated the expression of PbNPR3 by directly binding to its promoter. PbNPR3 is one of the key genes in the salicylic acid (SA) signal transduction pathway that can inhibit SA signal transduction. Here, we proposed a PbATL18-PbbZIP4-PbNPR3-SA model for plant response to C. fructicola infection. PbbZIP4 was ubiquitinated by PbATL18 and degraded by the 26S proteasome, which decreased the expression of PbNPR3 and promoted SA signal transduction, thereby enhancing plant C. fructicola resistance. Our study provides new insights into the molecular mechanism of pear response to C. fructicola infection, which can serve as a theoretical basis for breeding superior disease-resistant pear varieties.


Asunto(s)
Colletotrichum , Pyrus , Ubiquitina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/genética , Proteínas Ubiquitinadas , Fitomejoramiento , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología
4.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169310

RESUMEN

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Rosaceae , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Pyrus/genética , Arabidopsis/genética , Evolución Molecular , Sintenía , Familia de Multigenes
5.
BMC Plant Biol ; 24(1): 169, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443784

RESUMEN

BACKGROUND: Dwarf rootstocks have important practical significance for high-density planting in pear orchards. The shoots of 'Cuiguan' grafted onto the dwarf rootstock were shorter than those grafted onto the vigorous rootstock. However, the mechanism of shorter shoot formation is not clear. RESULTS: In this study, the current-year shoot transcriptomes and phytohormone contents of 'CG‒QA' ('Cuiguan' was grafted onto 'Quince A', and 'Hardy' was used as interstock) and 'CG‒DL' ('Cuiguan' was grafted onto 'Duli', and 'Hardy' was used as interstock) were compared. The transcriptome results showed that a total of 452 differentially expressed genes (DEGs) were identified, including 248 downregulated genes and 204 upregulated genes; the plant hormone signal transduction and zeatin biosynthesis pathways were significantly enriched in the top 20 KEGG enrichment terms. Abscisic acid (ABA) was the most abundant hormone in 'CG‒QA' and 'CG‒DL'; auxin and cytokinin (CTK) were the most diverse hormones; additionally, the contents of ABA, auxin, and CTK in 'CG‒DL' were higher than those in 'CG‒QA', while the fresh shoot of 'CG‒QA' accumulated more gibberellin (GA) and salicylic acid (SA). Metabolome and transcriptome co-analysis identified three key hormone-related DEGs, of which two (Aldehyde dehydrogenase gene ALDH3F1 and YUCCA2) were upregulated and one (Cytokinin oxidase/dehydrogenase gene CKX3) was downregulated. CONCLUSIONS: Based on the results of transcriptomic and metabolomic analysis, we found that auxin and CTK mainly regulated the shoot differences of 'CG-QA' and 'CG-DL', and other hormones such as ABA, GA, and SA synergistically regulated this process. Three hormone-related genes ALDH3F1, YUCCA2, and CKX3 were the key genes contributing to the difference in shoot growth between 'CG-QA' and 'CG-DL' pear. This research provides new insight into the molecular mechanism underlying shoot shortening after grafted onto dwarf rootstocks.


Asunto(s)
Pyrus , Rosaceae , Pyrus/genética , Transcriptoma , Metaboloma , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Citocininas , Hormonas , Ácidos Indolacéticos , China
6.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811892

RESUMEN

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Asunto(s)
Ascomicetos , Ciclopentanos , Resistencia a la Enfermedad , Frutas , Melatonina , Oxilipinas , Florizina , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Pyrus/metabolismo , Pyrus/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Ascomicetos/fisiología , Melatonina/farmacología , Melatonina/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Frutas/microbiología , Frutas/metabolismo , Florizina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
7.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937683

RESUMEN

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Pyrus/genética , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
8.
BMC Plant Biol ; 24(1): 444, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778247

RESUMEN

BACKGROUND: The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS: In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS: This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.


Asunto(s)
Frutas , Proteínas de Plantas , Pyrus , Factores de Transcripción , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Leucina Zippers/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
BMC Plant Biol ; 24(1): 28, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172675

RESUMEN

BACKGROUND: Canopy architecture is critical in determining the fruit-zone microclimate and, ultimately, in determining an orchard's success in terms of the quality and quantity of the fruit produced. However, few studies have addressed how the canopy environment leads to metabolomic and transcriptomic alterations in fruits. Designing strategies for improving the quality of pear nutritional components relies on uncovering the related regulatory mechanisms. RESULTS: We performed an in-depth investigation of the impact of canopy architecture from physiological, metabolomic and transcriptomic perspectives by comparing pear fruits grown in a traditional freestanding system (SP) or a flat-type trellis system (DP). Physiological studies revealed relatively greater fruit sizes, soluble solid contents and titratable acidities in pear fruits from DP systems with open canopies. Nontargeted metabolite profiling was used to characterize fruits at the initial ripening stage. Significant differences in fruit metabolites, including carbohydrates, nucleic acids, alkaloids, glycerophospholipids, sterol lipids, and prenol lipids, were observed between the two groups. Transcriptomic analysis indicated that a series of organic substance catabolic processes (e.g., the glycerol-3-phosphate catabolic process, pectin catabolic process and glucan catabolic process) were overrepresented in fruits of the DP system. Moreover, integrative analysis of the metabolome and transcriptome at the pathway level showed that DP pear fruits may respond to the canopy microenvironment by upregulating phenylpropanoid biosynthesis pathway genes such as PpPOD. Transient assays revealed that the contents of malic acid and citric acid were lower in the pear flesh of PpPOD RNAi plants, which was associated with regulating the expression of organic acid metabolism-related genes. CONCLUSIONS: Our results provide fundamental evidence that at the physiological and molecular levels, open-canopy architecture contributes to improving pear fruit quality and is correlated with increased levels of carbohydrates and lipid-like molecules. This study may lead to the development of rational culture practices for enhancing the nutritional traits of pear fruits.


Asunto(s)
Pyrus , Frutas , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Carbohidratos , Lípidos , Regulación de la Expresión Génica de las Plantas
10.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429502

RESUMEN

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Asunto(s)
Malus , Pyrus , Rosaceae , Humanos , Malus/genética , Pyrus/genética , Pyrus/metabolismo , Fitomejoramiento , Rosaceae/genética , Hibridación Genética
11.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169146

RESUMEN

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Asunto(s)
Proteínas de Plantas , Pyrus , Alelos , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Fenotipo , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Cell Environ ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222041

RESUMEN

Drought poses significant challenges to agricultural production, ecological stability and global food security. While wild pear trees exhibit strong drought resistance, cultivated varieties show weaker drought tolerance. This study aims to elucidate the molecular mechanisms underlying pear trees' response to drought stress. We identified a drought resistance-related transcription factor, PbbZIP88, which binds to and activates the expression of the drought-responsive gene PbATL18. Overexpression of PbbZIP88 in Arabidopsis and pear seedlings resulted in enhanced drought resistance and significantly improved physiological parameters under drought stress. We discovered that PbbZIP88 interacts with the key protein PbSRK2E in the ABA signalling pathway. This interaction enhances PbbZIP88's ability to activate PbATL18 expression, leading to higher levels of PbATL18. Furthermore, the PbbZIP88 and PbSRK2E interaction accelerates the regulation of stomatal closure under ABA treatment conditions, reducing water loss more effectively. Experimental evidence showed that silencing PbbZIP88 and PbSRK2E genes significantly decreased drought resistance in pear seedlings. In conclusion, this study reveals the synergistic role of PbbZIP88 and PbSRK2E in enhancing drought resistance in pear trees, particularly in the upregulation of PbATL18 expression, and the accelerated promotion of stomatal closure. These findings provide new candidate genes for breeding drought-resistant varieties and offer a theoretical foundation and technical support for achieving sustainable agriculture.

13.
Mol Breed ; 44(3): 18, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38390031

RESUMEN

Cold shock domain proteins (CSPs), initially identified in Escherichia coli, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and Arabidopsis have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (Pyrus bretschneideri Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of PbrCSP1 significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of PbrCSP1 promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01457-w.

14.
Plant Cell Rep ; 43(2): 34, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200377

RESUMEN

KEY MESSAGE: PbMYB1L enhances the cold tolerance and anthocyanin accumulation of transgenic Arabidopsis by regulating the expression of genes related to the cold-responsive genes pathway and anthocyanin synthesis pathway. MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development. In the present study, we identified a novel R2R3-MYB transcription factor, PbMYB1L, from the peel of 'Red Zaosu' pear (Pyrus bretschneideri), which was induced by cold stress and acted as a positive regulator in anthocyanin biosynthesis. Notably, the transgenic Arabidopsis lines exhibited enhanced tolerance to cold stress. Compared to the Arabidopsis wild-type plants, the transgenic lines displayed longer primary roots and reduced reactive oxygen species (ROS) levels including O2-, hydrogen peroxide (H2O2), and malondialdehyde (MDA). Furthermore, significant upregulation of key cold-responsive genes AtCBF1, AtCBF2, AtCBF3, AtCBF4, and AtKIN1 was observed in the transgenic plants under cold stress conditions compared to wild type. Arabidopsis plants overexpressing PbMYB1L had significant anthocyanin accumulation in leaves after cold treatment with quantitative results indicating higher expression of anthocyanin structural genes compared to wild type. These findings suggest that PbMYB1L not only plays a vital role in conferring cold tolerance but also acts as a crucial regulator of anthocyanin biosynthesis.


Asunto(s)
Arabidopsis , Pyrus , Factores de Transcripción/genética , Pyrus/genética , Antocianinas , Arabidopsis/genética , Peróxido de Hidrógeno
15.
Public Health Nutr ; 27(1): e106, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433598

RESUMEN

OBJECTIVE: The National Health Service (NHS) England website provides guidance on foods/drinks to avoid or limit during pregnancy because of microbiological, toxicological or teratogenic hazards. The aims were to determine adherence and whether demographic characteristics were associated with adherence. DESIGN: Cross-sectional study. SETTING: Online survey of postpartum women resident in England during pregnancy. PARTICIPANTS: Recently, postpartum women resident in England during their pregnancy (n 598; median age 33 (IQR 30-36) years) completed an online questionnaire (April-November 2022). Questions included those on consumption of twenty-one food/drink items that the NHS advises pregnant women to avoid/limit. The study is part of the Pregnancy, the Environment And nutRition (PEAR) Study. Summary statistics were used to determine proportions adhering to the guidance. Adjusted logistic regression was used to model the associations of adherence with demographic characteristics. RESULTS: Adherence was generally high (>90 % for eight of ten food/drink items to be avoided). However, among pre-pregnancy consumers, several items were not completely avoided, for example, 81 % (128/158) for game meat/gamebirds, 37 % (176/478) for cured meats and 17 % (81/467) for soft cheeses. Greater educational attainment (e.g. caffeinated soft drinks OR 2·25 (95 % CI 1·28, 3·94)), greater maternal age (e.g. oily fish 1·64 (1·05, 2·56)) and lower parity (e.g. caffeinated coffee 0.28 (0.11, 0.69)) were the most usual characteristics associated with adherence. CONCLUSION: Evidence of concerning levels of non-adherence for some food/drink items suggests a case for more education on some of the guidance, particularly for women with lower educational attainment, greater parity and greater maternal age. Further research on barriers to the implementation of the guidance is needed.


Asunto(s)
Alimentos , Medicina Estatal , Femenino , Humanos , Embarazo , Adulto , Estudios Transversales , Encuestas y Cuestionarios , Bebidas Gaseosas
16.
Food Microbiol ; 124: 104600, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244359

RESUMEN

This study aimed to assess the impact of Saccharomyces cerevisiae and different non-Saccharomyces cerevisiae (Zygosaccharomyces bailii, Hanseniaspora opuntiae and Zygosaccharomyces rouxii) on the volatile compounds and sensory properties of low-alcohol pear beverages fermented from three varieties of pear juices (Korla, Laiyang and Binzhou). Results showed that all three pear juices were favorable matrices for yeasts growth. Non-Saccharomyces cerevisiae exhibited a higher capacity for acetate ester production compared to Saccharomyces cerevisiae, resulting in a significant enhancement in sensory complexity of the beverages. PCA and sensory analysis demonstrated that pear varieties exerted a stronger influence on the crucial volatile components and aroma characteristics of the fermented beverages compared to the yeast species. CA results showed different yeast strains exhibited suitability for the fermentation of specific pear juice varieties.


Asunto(s)
Fermentación , Odorantes , Pyrus , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Pyrus/microbiología , Pyrus/química , Odorantes/análisis , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Gusto , Humanos , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crecimiento & desarrollo , Hanseniaspora/metabolismo , Hanseniaspora/crecimiento & desarrollo , Frutas/microbiología , Frutas/química , Saccharomycetales
17.
Chem Biodivers ; : e202401030, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073317

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial disease leading to pulmonary damage and respiratory failure.  We aimed to investigate the effect of prickly pear molasses (PPM) on an experimental model of pulmonary fibrosis induced by bleomycin (BLM) in Wistar rat. Animals were divided into 5 groups: the control group (G1), the BLM group (G2) and three groups (G3, G4, G5) receiving a single intra-tracheal injection of BLM (4 mg/kg) and PPM (at 2, 4.5 and10 %) that was introduced into the diet one week before BLM injection and continued for 3 weeks. Our phytochemical results revealed significant polyphenol and flavonoid content. LCMS analysis revealed the presence of Sinapinic acid, t-ferulic acid, t-cinnamic acid, Caffeic acid, gallic acid and vallinic acid among others. Our histological study revealed significant decrease in collagen deposition in the groups of rats treated with 4.5% and 10% molasses compared to BLM group. Oxidative stress in pulmonary tissues was investigated using catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) assays. Treatment with PPM normalized the disturbance in the level of these oxidative markers in G3,G4, G5 compared to G2. In conclusion, PPM exhibit antifibrotic and antioxidant activities in BLM model of lung fibrosis.

18.
Plant Dis ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215500

RESUMEN

Erwinia amylovora is a bacterial pathogen that causes fire blight, an important disease in apples and pears. Applying the antibiotic streptomycin during the phenological bloom stage is considered the most effective management tactic for fire blight. Though streptomycin-resistant (SmR) E. amylovora populations have emerged in major U.S. apple-producing regions, antibiotic resistance data for medium to small-sized apple-producing regions like the Midwest is still lacking. This short communication collected symptomatic fire blight samples from Iowa apple orchards during 2022 and 2023, where recent fire blight outbreaks persisted despite streptomycin use. Among E. amylovora isolates from seven counties in central and eastern Iowa, around 90% of them were SmR. All SmR isolates exhibited a single base pair mutation in codon 43 of the rpsL gene, conferring resistance to streptomycin levels exceeding 1,000 µg/mL. Through clustered regularly interspaced short palindromic repeat (CRISPR) analysis, we characterized two E. amylovora genotypes unique to our region. Whole genome sequencing of one representative SmR isolate, IA01, confirmed its CRISPR genotype and subsequent phylogenetic analysis suggested that IA01 is genetically similar to Michigan isolates and distinct from those in eastern and western regions of North America. Furthermore, the disease-causing ability of IA01 was comparable to that of the highly virulent Ea110 strain, a streptomycin sensitive strain isolated from Michigan, in immature pears. Overall, this study underscores the urgent need for regional strategies to address antibiotic resistance and provide insights into its genetic basis and geographic distribution which are crucial for sustainable orchard management.

19.
Plant Dis ; 108(5): 1382-1390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115565

RESUMEN

Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.


Asunto(s)
Frutas , Filogenia , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Enfermedades de las Plantas/microbiología , China , Frutas/microbiología , Penicillium/genética , Penicillium/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/fisiología , Hongos/aislamiento & purificación , Alternaria/genética , Alternaria/fisiología , Biodiversidad
20.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205081

RESUMEN

Fire blight is an infectious disease found in apple and pear orchards. While managing the disease is critical to maintaining orchard health, identifying symptoms early is a challenging task which requires trained expert personnel. This paper presents an inspection technique that targets individual symptoms via deep learning and density estimation. We evaluate the effects of including multi-spectral sensors in the model's pipeline. Results show that adding near infrared (NIR) channels can help improve prediction performance and that density estimation can detect possible symptoms when severity is in the mid-high range.


Asunto(s)
Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Enfermedades de las Plantas/microbiología , Aprendizaje Profundo , Malus/microbiología , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA