Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402557, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845022

RESUMEN

Perovskite materials, particularly FAPbI3, have emerged as promising candidates for solar energy conversion applications. However, these materials are plagued by well-known defects and suboptimal film quality. Enhancing crystallinity and minimizing defect density are therefore essential steps in the development of high-performance perovskite solar cells. In this study, 1H-Pyrazole-1-carboximidamide hydrochloride (PCH) is introduced into FAPbI3 perovskite films. The molecular structure of PCH features a pyrazole ring bonded to formamidine (FA). The FA moiety of PCH facilitated the incorporation of this additive into the film lattice, while the negatively charged pyrazole ring effectively passivated positively charged iodine vacancies. The presence of PCH led to the fabrication of an FAPbI3 device with improved crystallinity, a smoother surface, and reduced defect density, resulting in enhanced Voc and fill factor. A record power conversion efficiency of 24.62% is achieved, along with exceptional stability under prolonged air exposure and thermal stress. The findings highlight the efficacy of PCH as a novel additive for the development of high-performance perovskite solar cells.

2.
Small ; 20(25): e2306978, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38195877

RESUMEN

In inverted perovskite solar cells, conventional planar 2D/3D perovskite heterojunctions typically exhibit a type-II band alignment, where the electric field tends to drive the electron motion in the opposite direction to the direction of electron transfer. Here, a 2D/3D gradient heterojunction is developed by allowing the 2D perovskite to infiltrate the 3D perovskite surface along the grain boundaries using the interaction between the organic cation of the 2D perovskite and the pseudohalogen thiocyanate ion (SCN-), which has the ability to diffuse downward. The infiltrated 2D perovskite not only fills the gaps of grain boundaries with improved structural stability, but it also reconstructs the original landscape of the electric field toward the n-doped surface to enable more rapid electron transfer and weaken the adverse type-II band alignment effect. Since 2D perovskite seals the GBs, the nonvolatile SCN- can accumulate at the top and bottom dual interfaces, releasing residual stress and significantly inhibiting nonradiative recombination. The device exhibits an excellent efficiency of 24.76% (certified 24.29%) and long-term stability that is >90% of the original PCE value after 800 h of heating at 85 °C or in high humidity (≈65%).

3.
Small ; 20(25): e2311400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196055

RESUMEN

Passivating the electronic defects of metal halide perovskite is regarded as an effective way to improve the power conversion efficiency (PCE) of perovskite solar cells (PVSCs). Here, a series of dipeptide molecules with abundant ─C═O, ─O─ and ─NH functional groups as defects passivators for perovskite films are employed. These dipeptide molecules are utilized to treat the surface of prototype methyl ammonium lead iodide (MAPbI3) films and the corresponding PVSCs exhibit enhanced photovoltaic performance and ambient stability, which can be ascribed to: 1) the ─C═O and ─O─ can interact with the undercoordinated Pb2+ ions and the ─NH groups can form hydrogen bonds with the I- ions, passivating the defects in perovskite film and reducing charge recombination in PVSCs; 2) the long alkyl chain of dipeptide molecules increases the hydrophobicity of the perovskite surface and thus enhance the stability of PVSCs. The passivated MAPbI3-based PVSCs exhibit a champion PCE of 20.3% and retain 60% of the initial PCE after 1000 h. It is believed that the defects passivation engineering using polypeptide moleculars can be applied in other perovskite compositions for high device efficiency and stability.

4.
Small ; : e2310939, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453670

RESUMEN

Nickel oxide (NiOx ) is commonly used as a holetransporting material (HTM) in p-i-n perovskite solar cells. However, the weak chemical interaction between the NiOx and CH3 NH3 PbI3 (MAPbI3 ) interface results in poor crystallinity, ineffective hole extraction, and enhanced carrier recombination, which are the leading causes for the limited stability and power conversion efficiency (PCE). Herein, two HTMs, TRUX-D1 (N2 ,N7 ,N12 -tris(9,9-dimethyl-9H-fluoren-2-yl)-5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine) and TRUX-D2 (5,5,10,10,15,15-hexaheptyl-N2 ,N7 ,N12 -tris(4-methoxyphenyl)-N2 ,N7 ,N12 -tris(10-methyl-10H-phenothiazin-3-yl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine), are designed with a rigid planar C3 symmetry truxene core integrated with electron-donating amino groups at peripheral positions. The TRUX-D molecules are employed as effective interfacial layer (IFL) materials between the NiOx and MAPbI3 interface. The incorporation of truxene-based IFLs improves the quality of perovskite crystallinity, minimizes nonradiative recombination, and accelerates charge extraction which has been confirmed by various characterization techniques. As a result, the TRUX-D1 exhibits a maximum PCE of up to 20.8% with an impressive long-term stability. The unencapsulated device retains 98% of their initial performance following 210 days of aging in a glove box and 75.5% for the device after 80 days under ambient air condition with humidity over 40% at 25 °C.

5.
Small ; : e2402997, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794867

RESUMEN

Despite CsPbI2.75Br0.25 inorganic perovskites exhibit high potential for single-junction and/or tandem solar cells, unexpected non-radiative recombination, and mismatched interfacial band alignment within the inorganic perovskite solar cells (PSCs) disadvantageously affect their photovoltaic performance. Rational design of the dipole shielding layer (DSL) is vital to realize a win-win situation for the defect passivation and band alignment. Herein, A-site dipole molecules, that is, neopentylamine and 2-methylbutylamine, are employed for in-situ self-assembly of a thus-far unreported DSL at the interface between 3D perovskite and hole transport layer. The as-prepared DSL demonstrates a 2D RP phase perovskite and the lattice-matching structurally-stable DSL@3D perovskite enables to alleviate the unexpected surface defects and suppress the spontaneous non-radiative recombination by means of effectively tuning the surface work function via regulating the dipole moment length and Van der Waals gap. Accordingly, the top dipole-modified inorganic PSCs exhibit a champion power conversion efficiency (PSC) as high as 19.77% and a fill factor over 83%. Equally importantly, the corresponding solar cells demonstrate a remarkable enhanced stability, maintaining 90% of its initial efficiency for more than 1200 h without encapsulation under a 20% ± 5% relative humidity.

6.
Small ; : e2404058, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873880

RESUMEN

Blade-coating stands out as an alternative for fabricating scalable perovskite solar cells. However, it demands special control of the precursor composition regarding nucleation and crystallization and currently exhibits lower performance than the spin-coating process. It is mainly the resulting film morphology and excess lead iodide (PbI2) distribution that influences the optoelectronic properties. Here, the effectiveness of introducing N-Methyl-2-pyrrolidone (NMP) to regulate the structure of the perovskite layer and the redistribution of PbI2 is found. The introduction of NMP leads to the accumulation of excess PbI2, mainly on the top surface, reducing residual PbI2 at the perovskite buried interface. This not only facilitates the passivation of perovskite grain boundaries but also eliminates the potential degradation of the PbI2 triggered by light illumination in the perovskite buried interface. The optimized NMP-modified inverted perovskite solar cell achieves a champion efficiency of 24.5%, among the highest reported blade-coated perovskite solar cells. Furthermore, 13.68 cm2 blading perovskite solar modules are fabricated and demonstrate an efficiency of up to 20.4%. These findings underscore that with proper modulation of precursor composition, blade-coating can be a feasible and superior alternative for manufacturing high-quality perovskite films, paving the way for their large-scale applications in photovoltaic technology.

7.
Small ; : e2400173, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822718

RESUMEN

Perovskite solar cells, recognized for their high photovoltaic conversion efficiency (PCE), cost-effectiveness, and simple fabrication, face challenges in PCE improvement due to structural defects in polycrystalline films. This study introduces a novel fabrication method for perovskite films using methylammonium chloride (MACl) to align grain orientation uniformly, followed by a high-pressure process to merge these grains into a texture resembling single-crystal perovskite. Employing advanced visual fluorescence microscopy, charge dynamics in these films are analyzed, uncovering the significant impact of grain boundaries on photo-generated charge transport within perovskite crystals. A key discovery is that optimal charge transport efficiency and speed occur in grain centers when the grain size exceeds 10 µm, challenging the traditional view that efficiency peaks when grain size surpasses film thickness to form a monolayer. Additionally, the presence of large-sized grains enhances ion activation energy, reducing ion migration under light and improving resistance to photo-induced degradation. In application, a perovskite solar cell module with large grains achieve a PCE of 22.45%, maintaining performance with no significant degradation under continuous white LED light at 100 mA cm-2 for over 1000 h. This study offers a new approach to perovskite film fabrication and insights into optimizing perovskite solar cell modules.

8.
Small ; 20(26): e2310568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239094

RESUMEN

Inverted flexible perovskite cells (fPSCs) have attracted much attention for their high efficiency and power per weight. Still, the steady-state output is one of the critical factors for their commercialization. In this paper, it is found that the steady-state current of inverted fPSCs based on nickel oxide nanoparticles (n-NiOx) continuously decreases under light illumination. Conversely, those based on magnetron-sputtered NiOx (sp-NiOx) exhibit the opposite result. Based on visualization of ion migration in the photoluminescence (PL) imaging microscopy tests, the discrepancies in the buried surfaces lead to the differences in ion migration in perovskite films, which triggers the temporary instability of the output current of devices during operation. The DFT theoretical calculation and experimental results reveal that NiOx films with different contents of Ni vacancies can modulate the crystallization of the perovskite films on the NiOx surfaces. Tuning the crystallization of the perovskite films is essential to stabilize the output current of fPSCs at a steady state. To demonstrate that, capsaicin is doped into the perovskite solutions to improve the quality of the perovskite buried interface. Finally, the corresponding fPSCs exhibit outstanding efficiency and stability during operation. These results provide valuable scientific guidance for fabricating fPSCs with stable operation under illumination conditions.

9.
Small ; : e2402215, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045903

RESUMEN

Metal halide perovskite solar cells have achieved tremendous progress and have attracted enormous research and development efforts since the first report of demonstration in 2009. Due to fabrication versatility, many heat treatment methods can be utilized to achieve perovskite film crystallization. Herein, 10.6 µm carbon dioxide laser process is successfully developed for the first time for perovskite film crystallization. In addition, this is the first time formamidinium lead triiodide solar cells by laser annealing under ambient are demonstrated. The champion cell produces a power conversion efficiency of 21.8%, the highest for laser-annealed perovskite cells. And this is achieved without any additive, passivation, or post-treatment.

10.
Small ; 20(30): e2310196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38377307

RESUMEN

"Perovskite / Carbon" interface has remained a key bottleneck for the hole-conductor-free perovskite solar cells based on carbon-electrode (CPSCs), due to problems like loose physics contact, defects, energy mismatch, poor chemical coupling, etc. A previous study shows that octylammonium iodide (OAI) blending in carbon paste induced a kind of "in-situ healing" effect for "perovskite / carbon" interface, and improved power conversion efficiency from ≈13% to >19%. Here the beneath mechanism is further explored by careful examination of the interaction between OAI molecule and carbon black (CB) nanoparticles. It comes to show that, the famous "CB adsorption" plays a key role during the "healing" processes. Due to CB adsorption behavior, the mass ratio between OAI and CB influences much on the healing effect. By suitably adjusting the mass ratio between OAI and CB, and increasing the light harvest of perovskite, an efficiency of 19.41% is achieved for the hole-conductor-free CPSCs. Device efficiency and the charge-extraction and recombination process are tracked with the storage period, continuous improvement appears for devices assembled by relatively higher CB mass. A kind of "slow-release effect" is revealed during the OAI-induced "in-situ healing" process, which is caused by the famous "CB adsorption" behavior.

11.
Small ; 20(30): e2312265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415951

RESUMEN

The preparation of perovskite components (PbI2 and SnI2) using waste materials is of great significance for the commercialization of perovskite solar cells (PSCs). However, this goal is difficult to achieve due to the purity of the recovered products and the easy oxidation of Sn2+. Here, a simple one-step synthetic process to convert waste Sn-Pb solder into SnI2/PbI2 and then applied as-prepared SnI2/PbI2 to PSCs for high additional value is adopted. During fabrication, Sn-Pb waste solder is also employed to serve as a reducing agent to reduce the Sn4+ in Sn-Pb mixed narrow perovskite precursor and hence remove the deep trap states in perovskite. The target PSCs achieved an efficiency of 21.04%, which is better than the efficiency of the device with commercial SnI2/PbI2 (20.10%). Meanwhile, the target PSC maintained an initial efficiency of 80% even after 800 h under continuous illumination, which is significantly better than commercial devices. In addition, the method achieved a recovery rate of 90.12% for Sn-Pb waste solder, with a lab-grade purity (over 99.8%) for SnI2/PbI2, and the cost of perovskite active layer reduced to 39.81% through this recycling strategy through calculation.

12.
Chemistry ; 30(10): e202302552, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37997029

RESUMEN

This work demonstrated the first synthetic application of direct C-H olefinations in the step-saving preparation of various hole-transporting materials (HTM) for efficient perovskite solar cells (PSC). Cross-dehydrogenative couplings of naphthodithiophene (NDT) with vinyl arenes under palladium-catalysis facilely generated various new oligo(hetero)aryls with internal alkenes. Reaction conditions were optimized, which gave the product isolated yields of up to 71 % with high (E)-stereoselectivity. These readily accessible NDT core-based small molecules involving olefin as π-spacers displayed immediate power conversion efficiencies of up to 17.2 % without a device oxidation process that is required for the commercially available spiro-OMeTAD and most other existing HTMs while fabricated in corresponding PSC devices.

13.
Chemphyschem ; 25(3): e202300599, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012079

RESUMEN

Two-step deposition method has been widely exploited to fabricate FA1-x Csx PbI3 perovskite solar cells. However, in previous studies, CsI is mainly added into the PbI2 precursor with DMF/DMSO as solvent. Here in this study, a novel method to fabricate FA1-x Csx PbI3 perovskite has been proposed. The CsI is simultaneously added into the PbI2 precursor and the organic FAI/MACl salts solution in our modified two-step deposition process. The resulting FA1-x Csx PbI3 film exhibits larger perovskite crystals and suppressed defect density (4.05×1015  cm-3 ) compared with the reference perovskite film (9.23×1015  cm-3 ) without CsI. Therefore, the obtained FA1-x Csx PbI3 perovskite solar cells have demonstrated superior power conversion efficiencies (PCE=21.96 %) together with better long-term device stability.

14.
Chemphyschem ; : e202400333, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777788

RESUMEN

We fabricated MAPbI3 perovskite thin films with ZnO on a glass substrate, in which a passivation layer (Phenethylammonium iodide (PEAI); p-methoxyphenethylammonium iodide (CH3O-PEAI); 2-methoxyethylammonium iodide (MEAI)) was inserted between two layers. In order to understand the effect of the insertion of each passivation material on the transfer efficiency of the photo-generated electrons from MAPbI3 to ZnO, we observed the near-field heterodyne transient grating (NF-HD-TG) responses of each film and investigated the component arising from the recombination of the trapped electrons at the ZnO surface. Based on the accelerated recombination between photo-generated holes remaining in the MAPbI3 layer and surface-trapped electrons in ZnO and the increase in the number of the trapped electrons in ZnO when either CH3O-PEAI or PEAI was applied, we successfully revealed that the charge transfer efficiency was enhanced by the insertion of the passivation materials including a benzene ring stabilizing the defect states. Particularly, it was demonstrated that CH3O-PEAI showed the highest increase in the charge transfer efficiency, which could be attributed to the high electron density in the benzene ring, resulting from the existence of the electron donating group, CH3O, and its role in the effective transition from 3D to 2D perovskite phases.

15.
Nanotechnology ; 35(13)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100835

RESUMEN

The importance of light management for perovskite solar cells (PSCs) has recently been emphasized because their power conversion efficiency approaches their theoretical thermodynamic limits. Among optical strategies, anti-reflection (AR) coating is the most widely used method to reduce reflectance loss and thus increase light-harvesting efficiency. Monolayer MgF2is a well-known AR material because of its optimal refractive index, simple fabrication process, and physical and chemical durabilities. Nevertheless, quantitative estimates of the improvement achieved by the MgF2AR layer are lacking. In this study, we conducted theoretical and experimental evaluations to assess the AR effect of MgF2on the performance of formamidinium lead-triiodide PSCs. A sinusoidal tendency to enhance the short-circuit current density (JSC) was observed depending on the thickness, which was attributed to the interference of the incident light. A transfer matrix method-based simulation was conducted to calculate the optical losses, demonstrating the critical impact of reflectance loss on theJSCimprovement. The predictedJSCs values, depending on the perovskite thickness and the incident angle, are also presented. The combined use of experimental and theoretical approaches offers notable advantages, including accurate interpretation of photocurrent generation, detailed optical analysis of the experimental results, and device performance predictions under unexplored conditions.

16.
Nanotechnology ; 35(20)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38346336

RESUMEN

All-inorganic CsPbI2Br, as a promising photovoltaic (PV) material, have attracted extensive research attention in society for its outstanding thermal stability and appropriate trade-offs. Carbon-based perovskite solar cells (C-PSCs) without hole transporting layer (HTL) have shown great potential in terms of cost-effectiveness and stability. However, the inevitable defects on the surface of CsPbI2Br films severely hampers the development of high-efficiency CsPbI2Br C-PSCs. Surface engineering has emerged an effective approach to overcome this challenge. Herein, 1-decyl-3-methylimidazolium tetrafluoroborate (DMTT) ionic liquid was introduced between CsPbI2Br and carbon electrode to reduce non-recombination of charges, decrease defect states, minimize the energy-level mismatch, and greatly enhance the device stability. As a result, the HTL-free CsPbI2Br C-PSCs combined with DMTT as an interface modification achieved a higher power conversion efficiency (PCE) of 12.47% than that of the control devices with a PCE of 11.32%. Furthermore, without any encapsulation, the DMTT-optimized C-PSC remained approximately 84% of its initial PCE after over 700 h under room temperature and 25% relative humidity (RH) conditions. Additionally, when exposed to a temperature of 65 °C for over 400 h, the device still retained 74% of the initial PCE, demonstrating its thermal stability.

17.
Macromol Rapid Commun ; 45(6): e2300629, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38134957

RESUMEN

Three sulfonate-containing polyelectrolytes are elaborately designed and used to passivate perovskite film with the anti-solvent method. Under the influence of the secondary monomer, three copolymers present various chemical configurations and deliver different modification effects. Fluorene-thiophene copolymer STF has linear and highly-conjugated chain. STF-perovskite film presents large crystal grains. Fluorene-carbazole copolymer SCF has flexible chain and easily enters into grain boundary areas. SCF-perovskite film is homogenous and continuous. Fluorene-fluorene copolymer SPF agglomerates on the surface and is not applicable to the anti-solvent method. The full investigation demonstrates that STF and SCF not only conduct surface defect passivation, but also improve the film quality by being involved in the perovskite's crystallization process. Compared with the control device, the devices with STF and SCF deliver high efficiency and excellent stability. The unencapsulated devices with STF and SCT maintain ≈80% of the initial power conversion efficiency (PCE) after 40 days of storage under 30-40% relative humidity. SCF performs better and the device maintains 60% of the initial PCE after 20 days of storage under 60-80% relative humidity.


Asunto(s)
Compuestos de Calcio , Óxidos , Polímeros , Titanio , Polielectrolitos , Alcanosulfonatos , Fluorenos , Solventes
18.
Nano Lett ; 23(19): 8850-8859, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748018

RESUMEN

Defect passivation is crucial to enhancing the performance of perovskite solar cells (PSCs). In this study, we successfully synthesized a novel organic compound named DPPO, which consists of a double phosphonate group. Subsequently, we incorporated DPPO into a perovskite solution. The presence of a P═O group interacting with undercoordinated Pb2+ yielded a perovskite film of superior crystallinity, greater crystal orientation, and smoother surface. Additionally, the addition of DPPO can passivate defect states and enhance upper layer energy level alignment, which will improve carrier extraction and prevent nonradiative recombination. Consequently, an impressive champion efficiency of 24.24% was achieved with a minimized hysteresis. Furthermore, the DPPO-modified PSCs exhibit enhanced durability when exposed to ambient conditions, maintaining 95% of the initial efficiency for 1920 h at an average relative humidity (RH) of 30%.

19.
Nano Lett ; 23(6): 2195-2202, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913436

RESUMEN

Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.

20.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893433

RESUMEN

Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have emerged as promising candidates for enhancing both the stability and efficiency of perovskite solar cells (PSCs). Their rising prominence is attributed to their dual capabilities: they effectively passivate the surfaces of perovskite-sensitive materials while simultaneously serving as efficient spectrum converters for sunlight. In this work, we synthesized UCNPs doped with erbium ions as down/upconverting ions for ultraviolet (UV) and near-infrared (NIR) light harvesting. Various percentages of the synthesized UCNPs were integrated into the mesoporous layers of PSCs. The best photovoltaic performance was achieved by a PSC device with 30% UCNPs doped in the mesoporous layer, with PCE = 16.22% and a fill factor (FF) of 74%. In addition, the champion PSCs doped with 30% UCNPs were then passivated with carbon quantum dots at different spin coating speeds to improve their photovoltaic performance. When compared to the pristine PSCs, a fabricated PSC device with 30% UCNPs passivated with CQDs at a spin coating speed of 3000 rpm showed improved power conversion efficiency (PCE), from 16.65% to 18.15%; a higher photocurrent, from 20.44 mA/cm2 to 22.25 mA/cm2; and a superior fill factor (FF) of 76%. Furthermore, the PSCs integrated with UCNPs and CQDs showed better stability than the pristine devices. These findings clear the way for the development of effective PSCs for use in renewable energy applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA