Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(6): e2300243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593284

RESUMEN

The autophagy initiation complex is brought about via a highly ordered and stepwise assembly process. Two crucial signaling molecules, mTORC1 and AMPK, orchestrate this assembly by phosphorylating/dephosphorylating autophagy-related proteins. Activation of Atg1 followed by recruitment of both Atg9 vesicles and the PI3K complex I to the PAS (phagophore assembly site) are particularly crucial steps in its formation. Ypt1, a small Rab GTPase in yeast cells, also plays an essential role in the formation of the autophagy initiation complex through multiple regulatory pathways. In this review, our primary focus is to discuss how signaling molecules initiate the assembly of the autophagy initiation complex, and highlight the significant roles of Ypt1 in this process. We end by addressing issues that need future clarification.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transducción de Señal , Proteínas de Unión al GTP rab , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas de Unión al GTP rab/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Humanos , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Complejos Multiproteicos/metabolismo
2.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
3.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189542

RESUMEN

Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Diabetes Gestacional , Síndromes de Malabsorción , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Genoma Humano , ARN no Traducido/genética , Biomarcadores
4.
Mol Cell ; 68(1): 158-170.e3, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28918899

RESUMEN

Initiation is the rate-limiting step of translation, and in bacteria, mRNA secondary structure has been extensively reported as limiting the efficiency of translation by occluding the ribosome-binding site. In striking contrast with this inhibitory effect, we report here that stem-loop structures located within coding sequences instead activate translation initiation of the Escherichia coli fepA and bamA mRNAs involved in iron acquisition and outer membrane proteins assembly, respectively. Both structures promote ribosome binding in vitro, independently of their nucleotide sequence. Moreover, two small regulatory RNAs, OmrA and OmrB, base pair to and most likely disrupt the fepA stem-loop structure, thereby repressing FepA synthesis. By expanding our understanding of how mRNA cis-acting elements regulate translation, these data challenge the widespread view of mRNA secondary structures as translation inhibitors and show that translation-activating elements embedded in coding sequences can be targeted by small RNAs to inhibit gene expression.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Receptores de Superficie Celular/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Emparejamiento Base , Secuencia de Bases , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Secuencias Invertidas Repetidas , Hierro/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Receptores de Superficie Celular/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
5.
Proteomics ; : e2300350, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491406

RESUMEN

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

6.
J Biol Chem ; 299(10): 105188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625591

RESUMEN

Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.

7.
Mol Cancer ; 23(1): 183, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223527

RESUMEN

Programmed death receptor-1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1) are essential molecules that are key in modulating immune responses. PD-L1 is constitutively expressed on various immune cells, epithelial cells, and cancer cells, where it functions as a co-stimulatory molecule capable of impairing T-cell mediated immune responses. Upon binding to PD-1 on activated T-cells, the PD-1/PD-L1 interaction triggers signaling pathways that can induce T-cell apoptosis or anergy, thereby facilitating the immune escape of tumors. In urological cancers, including bladder cancer (BCa), renal cell carcinoma (RCC), and prostate cancer (PCa), the upregulation of PD-L1 has been demonstrated. It is linked to poor prognosis and enhanced tumor immune evasion. Recent studies have highlighted the significant role of the PD-1/PD-L1 axis in the immune escape mechanisms of urological cancers. The interaction between PD-L1 and PD-1 on T-cells further contributes to immunosuppression by inhibiting T-cell activation and proliferation. Clinical applications of PD-1/PD-L1 checkpoint inhibitors have shown promising efficacy in treating advanced urological cancers, significantly improving patient outcomes. However, resistance to these therapies, either intrinsic or acquired, remains a significant challenge. This review aims to provide a comprehensive overview of the role of the PD-1/PD-L1 signaling pathway in urological cancers. We summarize the regulatory mechanism underlying PD-1 and PD-L1 expression and activity, including genetic, epigenetic, post-transcriptional, and post-translational modifications. Additionally, we discuss current clinical research on PD-1/PD-L1 inhibitors, their therapeutic potential, and the challenges associated with resistance. Understanding these mechanisms is crucial for developing new strategies to overcome therapeutic limitations and enhance the efficacy of cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Receptor de Muerte Celular Programada 1 , Neoplasias Urológicas , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Inmunoterapia/métodos , Neoplasias Urológicas/terapia , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/inmunología , Neoplasias Urológicas/etiología , Neoplasias Urológicas/patología , Animales , Transducción de Señal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Escape del Tumor
8.
Mol Cancer ; 23(1): 108, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762484

RESUMEN

Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/etiología , Neoplasias/genética , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Animales , Transducción de Señal , Regulación Neoplásica de la Expresión Génica
9.
Curr Issues Mol Biol ; 46(6): 5825-5844, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921019

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.

10.
Development ; 148(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472851

RESUMEN

Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.


Asunto(s)
Tipificación del Cuerpo/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Humanos
11.
BMC Plant Biol ; 24(1): 787, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164616

RESUMEN

BACKGROUND: Soil salinity is one of the major abiotic stresses that threatens crop growth. Cotton has some degree of salt tolerance, known as the "pioneer crop" of saline-alkali land. Cultivation of cotton is of great significance to the utilization of saline-alkali land and the development of cotton industry. Gossypium hirsutum and G. barbadense, as two major cotton species, are widely cultivated worldwide. However, until recently, the regulatory mechanisms and specific differences of their responses to salt stress have rarely been reported. RESULTS: In this study, we comprehensively compared the differences in the responses of G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 to salt stress. The results showed that Hai7124 exhibited better growth than did TM-1 under salt stress, with greater PRO content and antioxidant capability, whereas TM-1 only presented greater K+ content. Transcriptome analysis revealed significant molecular differences between the two cotton species in response to salt stress. The key pathways of TM-1 induced by salt are mainly related to growth and development, such as porphyrin metabolism, DNA replication, ribosome and photosynthesis. Conversely, the key pathways of Hai7124, such as plant hormone signal transduction, MAPK signaling pathway-plant, and phenylpropanoid biosynthesis, are mainly related to plant defense. Further comparative analyses of differentially expressed genes (DEGs) revealed that antioxidant metabolism, abscisic acid (ABA) and jasmonic acid (JA) signalling pathways were more strongly activated in Hai7124, whereas TM-1 was more active in K+ transporter-related genes and ethylene (ETH) signalling pathway. These differences underscore the various molecular strategies adopted by the two cotton species to navigate through salt stress, and Hai7124 responded more strongly to salt stress, which explains the potential reasons for the greater salt tolerance of Hai7124. Finally, we identified 217 potential salt tolerance-related genes, 167 of which overlapped with the confidence intervals of significant SNPs identified in previous genome-wide association studies (GWASs), indicating the high reliability of these genes. CONCLUSIONS: These findings provide new insights into the differences in the regulatory mechanisms of salt tolerance between G. hirsutum and G. barbadense, and identify key candidate genes for salt tolerance molecular breeding in cotton.


Asunto(s)
Gossypium , Estrés Salino , Tolerancia a la Sal , Gossypium/genética , Gossypium/fisiología , Gossypium/crecimiento & desarrollo , Tolerancia a la Sal/genética , Estrés Salino/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Especificidad de la Especie
12.
Planta ; 260(1): 33, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896325

RESUMEN

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Asunto(s)
Agrostis , Aluminio , Antioxidantes , Malatos , Raíces de Plantas , Ácido gamma-Aminobutírico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Antioxidantes/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aluminio/toxicidad , Agrostis/efectos de los fármacos , Agrostis/metabolismo , Agrostis/fisiología , Malatos/metabolismo , Ácido Cítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos
13.
New Phytol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223898

RESUMEN

Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.

14.
J Exp Bot ; 75(16): 4729-4744, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38767602

RESUMEN

Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time-consuming and labour-intensive. Transcription factor-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB transcription factors and summarizes research progress concerning MYB transcription factors involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB transcription factors regulate multiple synthase genes to mediate the biosynthesis of active compounds. This work will serve as a reference for an in-depth analysis of the MYB transcription factor family in medicinal plants.


Asunto(s)
Proteínas de Plantas , Plantas Medicinales , Factores de Transcripción , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
15.
Insect Mol Biol ; 33(1): 69-80, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37792400

RESUMEN

The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.


Asunto(s)
Proteínas de Drosophila , Genes Homeobox , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Desarrollo Embrionario , Insectos/genética , Larva , Regulación del Desarrollo de la Expresión Génica , Proteínas de Drosophila/genética
16.
Cancer Cell Int ; 24(1): 97, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443961

RESUMEN

Gastrointestinal cancer, one of the most common cancers, continues to be a major cause of mortality and morbidity globally. Accumulating evidence has shown that alterations in mitochondrial energy metabolism are involved in developing various clinical diseases. NADH dehydrogenase 1 alpha subcomplex 4 (NDUFA4), encoded by the NDUFA4 gene located on human chromosome 7p21.3, is a component of mitochondrial respiratory chain complex IV and integral to mitochondrial energy metabolism. Recent researchers have disclosed that NDUFA4 is implicated in the pathogenesis of various diseases, including gastrointestinal cancer. Aberrant expression of NDUFA4 leads to the alteration in mitochondrial energy metabolism, thereby regulating the growth and metastasis of cancer cells, indicating that it might be a new promising target for cancer intervention. This article comprehensively reviews the structure, regulatory mechanism, and biological function of NDUFA4. Of note, the expression and roles of NDUFA4 in gastrointestinal cancer including colorectal cancer, liver cancer, gastric cancer, and so on were discussed. Finally, the existing problems of NDUFA4-based intervention on gastrointestinal cancer are discussed to provide help to strengthen the understanding of the carcinogenesis of gastrointestinal cancer, as well as the development of new strategies for clinical intervention.

17.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39244761

RESUMEN

Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.

18.
Ann Bot ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845347

RESUMEN

Plant senescence is an integrated program of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species, WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, ROS and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.

19.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566071

RESUMEN

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Asunto(s)
Bacillus , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Operón , Fermentación , Lipopéptidos , Péptidos Cíclicos
20.
Microb Cell Fact ; 23(1): 225, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123211

RESUMEN

BACKGROUND: To effectively introduce plasmids into Bacillus species and conduct genetic manipulations in Bacillus chassis strains, it is essential to optimize transformation methods. These methods aim to extend the period of competence and enhance the permeability of the cell membrane to facilitate the entry of exogenous DNA. Although various strategies have been explored, few studies have delved into identifying metabolites and pathways associated with enhanced competence. Additionally, derivative Bacillus strains with non-functional restriction-modification systems have demonstrated superior efficiency in transforming exogenous DNA, lacking more explorations in the regulation conducted by the restriction-modification system to transformation process. RESULTS: Transcriptomic comparisons were performed to discover the competence forming mechanism and the regulation pathway conducted by the BsuMI methylation modification group in Bacillus. subtilis 168 under the Spizizen transformation condition, which were speculated to be the preferential selection of carbon sources by the cells and the preference for specific metabolic pathway when utilizing the carbon source. The cells were found to utilize the glycolysis pathway to exploit environmental glucose while reducing the demand for other phosphorylated precursors in this pathway. The weakening of these ATP-substrate competitive metabolic pathways allowed more ATP substrates to be distributed into the auto-phosphorylation of the signal transduction factor ComP during competence formation, thereby increasing the expression level of the key regulatory protein ComK. The expression of ComK upregulated the expression of the negative regulator SacX of starch and sucrose in host cells, reinforcing the preference for glucose as the primary carbon source. The methylation modification group of the primary protein BsuMI in the restriction-modification system was associated with the functional modification of key enzymes in the oxidative phosphorylation pathway. The absence of the BsuMI methylation modification group resulted in a decrease in the expression of subunits of cytochrome oxidase, leading to a weakening of the oxidative phosphorylation pathway, which promoted the glycolytic rate of cells and subsequently improved the distribution of ATP molecules into competence formation. A genetic transformation platform for wild-type Bacillus strains was successfully established based on the constructed strain B. subtilis 168-R-M- without its native restriction-modification system. With this platform, high plasmids transformation efficiencies were achieved with a remarkable 63-fold improvement compared to the control group and an increased universality in Bacillus species was also obtained. CONCLUSIONS: The enhanced competence formation mechanism and the regulation pathway conducted by the functional protein BsuMI of the restriction-modification system were concluded, providing a reference for further investigation. An effective transformation platform was established to overcome the obstacles in DNA transformations in wild-type Bacillus strains.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Transformación Bacteriana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Plásmidos/genética , Plásmidos/metabolismo , Competencia de la Transformación por ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA