Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.515
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31382759

RESUMEN

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Sequías , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas , Salinidad , Suelo , Agua
2.
Plant Cell ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012965

RESUMEN

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

3.
Proc Natl Acad Sci U S A ; 121(22): e2313216121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781209

RESUMEN

Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Raíces de Plantas , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Morfogénesis/genética , Transporte Biológico
4.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487096

RESUMEN

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fenotipo , Regulación de la Expresión Génica de las Plantas
5.
Proc Natl Acad Sci U S A ; 120(3): e2210300120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634142

RESUMEN

Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.


Asunto(s)
Agrobacterium , Proteínas Represoras , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Plásmidos , Productos Agrícolas/genética , Inmunidad de la Planta , Raíces de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(15): e2301054120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011213

RESUMEN

The establishment of beneficial interactions with microbes has helped plants to modulate root branching plasticity in response to environmental cues. However, how the plant microbiota harmonizes with plant roots to control their branching is unknown. Here, we show that the plant microbiota influences root branching in the model plant Arabidopsis thaliana. We define that the microbiota's ability to control some stages in root branching can be independent of the phytohormone auxin that directs lateral root development under axenic conditions. In addition, we revealed a microbiota-driven mechanism controlling lateral root development that requires the induction of ethylene response pathways. We show that the microbial effects on root branching can be relevant for plant responses to environmental stresses. Thus, we discovered a microbiota-driven regulatory pathway controlling root branching plasticity that could contribute to plant adaptation to different ecosystems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
Plant J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923138

RESUMEN

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

8.
Plant J ; 118(3): 879-891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271219

RESUMEN

As sessile organisms, plants experience variable environments and encounter diverse stresses during their growth and development. Adventitious rooting, orchestrated by multiple coordinated signaling pathways, represents an adaptive strategy evolved by plants to adapt to cope with changing environmental conditions. This study uncovered the role of the miR159a-PeMYB33 module in the formation of adventitious roots (ARs) synergistically with abscisic acid (ABA) signaling in poplar. Overexpression of miR159a increased the number of ARs and plant height while reducing sensitivity to ABA in transgenic plants. In contrast, inhibition of miR159a (using Short Tandem Target Mimic) or overexpression of PeMYB33 decreased the number of ARs in transgenic plants. Additionally, miR159a targets and cleaves transcripts of PeMYB33 using degradome analysis, which was further confirmed by a transient expression experiment of poplar protoplast. We show the miR159a-PeMYB33 module controls ARs development in poplar through ABA signaling. In particular, we demonstrated that miR159a promotes the expression of genes in the ABA signaling pathway. The findings from this study shed light on the intricate regulatory mechanisms governing the development of ARs in poplar plants. The miR159a-PeMYB33 module, in conjunction with ABA signaling, plays a crucial role in modulating AR formation and subsequent plant growth.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Populus , Transducción de Señal , Ácido Abscísico/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314783

RESUMEN

Priming is the process through which periodic elevations in auxin signalling prepattern future sites for lateral root formation, called prebranch sites. Thus far, the extent to which elevations in auxin concentration and/or auxin signalling are required for priming and prebranch site formation has remained a matter of debate. Recently, we discovered a reflux-and-growth mechanism for priming generating periodic elevations in auxin concentration that subsequently dissipate. Here, we reverse engineer a mechanism for prebranch site formation that translates these transient elevations into a persistent increase in auxin signalling, resolving the prior debate into a two-step process of auxin concentration-mediated initial signal and auxin signalling capacity-mediated memorization. A crucial aspect of the prebranch site formation mechanism is its activation in response to time-integrated rather than instantaneous auxin signalling. The proposed mechanism is demonstrated to be consistent with prebranch site auxin signalling dynamics, lateral inhibition, and symmetry-breaking mechanisms and perturbations in auxin homeostasis.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Ácidos Indolacéticos/farmacología , Raíces de Plantas , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 119(30): e2201072119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858424

RESUMEN

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.


Asunto(s)
Ácido Abscísico , Etilenos , Ácidos Indolacéticos , Oryza , Raíces de Plantas , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Suelo
11.
BMC Genomics ; 25(1): 222, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418975

RESUMEN

Shepherd's crook (Geodorum) is a genus of protected orchids that are valuable both medicinally and ornamentally. Geodorum eulophioides (GE) is an endangered and narrowly distributed species, and Geodorum densiflorum (GD) and Geodorum attenuatum (GA) are widespread species. The growth of orchids depend on microorganisms. However, there are few studies on the microbial structure in Geodorum, and little is known about the roles of microorganisms in the endangered mechanism of G. eulophioides. This study analyzed the structure and composition of bacterial and fungal communities in the roots and rhizosphere soil of GE, GD, and GA. The results showed that Delftia, Bordetella and norank_f_Xanthobacteraceae were the dominant bacteria in the roots of Geodorum, while norank_f_Xanthobacteraceae, Gaiella and norank_f_norank_o_Gaiellales were the dominant bacteria in the rhizosphere soil of Geodorum. In the roots, the proportion of Mycobacterium in GD_roadside was higher than that in GD_understory, on the contrary, the proportion of Fusarium, Delftia and Bordetella in GD_roadside was lower than that in GD_understory. Compared with the GD_understory, the roots of GD_roadside had lower microbial diversity. In the endangered species GE, Russula was the primary fungus in the roots and rhizosphere soil, with fungal diversity lower than in the more widespread species. Among the widespread species, the dominant fungal genera in the roots and rhizosphere soil were Neocosmospora, Fusarium and Coprinopsis. This study enhances our understanding of microbial composition and diversity, providing fundamental information for future research on microbial contributions to plant growth and ecosystem function in Geodorum.


Asunto(s)
Agaricales , Fusarium , Rizosfera , Suelo/química , Ecosistema , Hongos/genética , Microbiología del Suelo , Raíces de Plantas/microbiología , Bacterias/genética
12.
Plant Mol Biol ; 114(1): 9, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315324

RESUMEN

To select poplar clones with excellent adventitious roots development (ARD) and deepen the understanding of its molecular mechanism, a comprehensive evaluation was conducted on 38 Populus germplasm resources with cuttings cultured in the greenhouse. Genetic differences between poplar clones with good ARD and with poor ARD were explored from the perspectives of genomics and transcriptomics. By cluster analysis of the seven adventitious roots (AR) traits, the materials were classified into three clusters, of which cluster I indicated excellent AR developmental capability and promising breeding potential, especially P.×canadensis 'Guariento', P. 'jingtong1', P. deltoides 'Zhongcheng5', P. deltoides 'Zhongcheng2'. At the genomic level, the cross-population composite likelihood ratio (XP-CLR) analysis identified 1944 positive selection regions related to ARD, and variation detection analysis identified 3426 specific SNPs and 687 specific Indels in the clones with good ARD, 3212 specific SNPs and 583 specific Indels in the clones with poor ARD, respectively. Through XP-CLR, variation detection, and weighted gene co-expression network analysis based on transcriptome data, eight major putative genes associated with poplar ARD were primary identified, and a co-expression network of eight genes was constructed, it was discovered that CSD1 and WRKY6 may be important in the ARD. Subsequently, we confirmed that SWEET17 had a non-synonymous mutation at the site of 928,404 in the clones with poor ARD, resulting in an alteration of the amino acid. After exploring phenotypic differences and the genetic variation of adventitious roots development in different poplar clones, this study provides valuable reference information for future poplar breeding and genetic improvement.


Asunto(s)
Populus , Populus/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Fenotipo , Raíces de Plantas/genética
13.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190549

RESUMEN

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Asunto(s)
Arabidopsis , Hidrolasas de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Mutación/genética , Pectinas/metabolismo , Concentración de Iones de Hidrógeno
14.
BMC Plant Biol ; 24(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163891

RESUMEN

Unpredictable rainfall frequently results in excess moisture, which is detrimental to the landscape because it interferes with the genetic, morphological, and physiological processes of plants, even though the majority of urban landscapes frequently experience moisture shortages. A study was conducted to analyze the effects of a 36-day waterlogging phase and a subsequent 12-day recovery period on the morpho-physiological responses of 17 Crassulaceae species with the goal of identifying those which were more tolerant of the conditions. Results revealed that waterlogging stress has an impact on all morpho-physiological parameters. Sensitive materials (S7, Hylotelephium telephium 'Purple Emperor' and S15, S. sexangulare) showed severe ornamental quality damage, mortality, decreases in total dry biomass, root-shoot ratio, and chlorophyll content, as well as higher MDA concentrations. Lower reductions in these parameters, along with improved antioxidant enzyme activities and greater recovery capabilities after drainage, were observed in the most tolerant materials S2 (H. spectabile 'Brilliant'), S3 (H. spectabile 'Carl'), and S5 (H. telephium 'Autumn Joy'). Furthermore, with the exception of early death materials (S7 and S15), all materials showed varying intensities of adventitious root formation in response to waterlogging. The 17 species were divided into 4 clusters based on the comprehensive evaluation value. The first group included S1-S3, S5-S6, S8-S12, which were waterlogged tolerant with the highest values (0.63-0.82). S14 belongs to the intermediate waterlogging tolerant. S4, S13, S16, and S17 were clustered into the low waterlogging-tolerant group. S7 and S15 were the most susceptible to waterlogging. The survival and success of Crassulaceae species (especially, the first and second cluster), throughout this prolonged period of waterlogging (36 days) and recovery were attributed to a combination of physiological and morphological responses, indicating that they are an appealing species for the creation of rain gardens or obstructed drainage locations.


Asunto(s)
Clorofila , Estaciones del Año , Biomasa
15.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778283

RESUMEN

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum , Raíces de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/genética , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas
16.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853268

RESUMEN

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Asunto(s)
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenoles , Raíces de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fenoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores del Crecimiento de las Plantas/metabolismo , Agrobacterium
17.
BMC Plant Biol ; 24(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163907

RESUMEN

Adventitious root formation is a key step in vegetative propagation via cuttings. It is crucial for establishing birch plantations and preserve birch varieties. Although previous studies have highlighted role of WOX11 in controlling adventitious root formation, no such study has been conducted in birch. Understanding the mechanism of adventitious root formation is essential for improvement of rooting or survival rate using stem cuttings in birch. In this study, we cloned BpWOX11 and produced BpWOX11 overexpression (OE) transgenic lines using the Agrobacterium-mediated plant transformation. OE lines exhibited early initiated adventitious root formation, leading to increase the rooting rate of stem cuttings plants. RNA sequencing analysis revealed that OE lines induced the gene expression related to expansin and cell division pathway, as well as defense and stress response genes. These may be important factors for the BpWOX11 gene to promote adventitious root formation in birch cuttings. The results of this study will help to further understand the molecular mechanisms controlling the formation of adventitious roots in birch.


Asunto(s)
Betula , Genes de Plantas , Raíces de Plantas , Raíces de Plantas/crecimiento & desarrollo , Betula/genética , Betula/crecimiento & desarrollo
18.
BMC Plant Biol ; 24(1): 120, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369495

RESUMEN

BACKGROUND: Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS: To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION: These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.


Asunto(s)
Arabidopsis , Mariposas Diurnas , Animales , Transcriptoma , Herbivoria/fisiología , Masticación , Mariposas Diurnas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ciclopentanos/metabolismo
19.
BMC Plant Biol ; 24(1): 81, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302884

RESUMEN

BACKGROUND: As a xerophytic shrub, forming developed root system dominated with lateral roots is one of the effective strategies for Zygophyllum xanthoxylum to adapt to desert habitat. However, the molecular mechanism of lateral root formation in Z. xanthoxylum is still unclear. Auxin response factors (ARFs) are a master family of transcription factors (TFs) in auxin-mediated biological processes including root growth and development. RESULTS: Here, to determine the relationship between ARFs and root system formation in Z. xanthoxylum, a total of 30 potential ZxARF genes were first identified, and their classifications, evolutionary relationships, duplication events and conserved domains were characterized. 107 ARF protein sequences from alga to higher plant species including Z. xanthoxylum are split into A, B, and C 3 Clades, consisting with previous studies. The comparative analysis of ARFs between xerophytes and mesophytes showed that A-ARFs of xerophytes expanded considerably more than that of mesophytes. Furthermore, in this Clade, ZxARF5b and ZxARF8b have lost the important B3 DNA-binding domain partly and completely, suggesting both two proteins may be more functional in activating transcription by dimerization with AUX/IAA repressors. qRT-PCR results showed that all A-ZxARFs are high expressed in the roots of Z. xanthoxylum, and they were significantly induced by drought stress. Among these A-ZxARFs, the over-expression assay showed that ZxARF7c and ZxARF7d play positive roles in lateral root formation. CONCLUSION: This study provided the first comprehensive overview of ZxARFs and highlighted the importance of A-ZxARFs in the lateral root development.


Asunto(s)
Zanthoxylum , Zygophyllum , Ácidos Indolacéticos/metabolismo , Zygophyllum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Planta ; 259(3): 54, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294548

RESUMEN

MAIN CONCLUSION: Using Raman micro-spectroscopy on tef roots, we could monitor cell wall maturation in lines with varied genetic lodging tendency. We describe the developing cell wall composition in root endodermis and cylinder tissue. Tef [Eragrostis tef (Zucc.) Trotter] is an important staple crop in Ethiopia and Eritrea, producing gluten-free and protein-rich grains. However, this crop is not adapted to modern farming practices due to high lodging susceptibility, which prevents the application of mechanical harvest. Lodging describes the displacement of roots (root lodging) or fracture of culms (stem lodging), forcing plants to bend or fall from their vertical position, causing significant yield losses. In this study, we aimed to understand the microstructural properties of crown roots, underlining tef tolerance/susceptibility to lodging. We analyzed plants at 5 and 10 weeks after emergence and compared trellised to lodged plants. Root cross sections from different tef genotypes were characterized by scanning electron microscopy, micro-computed tomography, and Raman micro-spectroscopy. Lodging susceptible genotypes exhibited early tissue maturation, including developed aerenchyma, intensive lignification, and lignin with high levels of crosslinks. A comparison between trellised and lodged plants suggested that lodging itself does not affect the histology of root tissue. Furthermore, cell wall composition along plant maturation was typical to each of the tested genotypes independently of trellising. Our results suggest that it is possible to select lines that exhibit slow maturation of crown roots. Such lines are predicted to show reduction in lodging and facilitate mechanical harvest.


Asunto(s)
Eragrostis , Microtomografía por Rayos X , Agricultura , Diferenciación Celular , Pared Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA