Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(6): 1937-1952, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38279949

RESUMEN

In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Enfermedad de Parkinson , Humanos , Prosencéfalo Basal/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Animales , Neuronas Colinérgicas/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000168

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an extremely complex neurodegenerative disease involving different cell types, but motoneuronal loss represents its main pathological feature. Moreover, compensatory plastic changes taking place in parallel to neurodegeneration are likely to affect the timing of ALS onset and progression and, interestingly, they might represent a promising target for disease-modifying treatments. Therefore, a simplified animal model mimicking motoneuronal loss without the other pathological aspects of ALS has been established by means of intramuscular injection of cholera toxin-B saporin (CTB-Sap), which is a targeted neurotoxin able to kill motoneurons by retrograde suicide transport. Previous studies employing the mouse CTB-Sap model have proven that spontaneous motor recovery is possible after a subtotal removal of a spinal motoneuronal pool. Although these kinds of plastic changes are not enough to counteract the functional effects of the progressive motoneuron degeneration, it would nevertheless represent a promising target for treatments aiming to postpone ALS onset and/or delay disease progression. Herein, the mouse CTB-Sap model has been used to test the efficacy of mitochondrial division inhibitor 1 (Mdivi-1) as a tool to counteract the CTB-Sap toxicity and/or to promote neuroplasticity. The homeostasis of mitochondrial fission/fusion dynamics is indeed important for cell integrity, and it could be affected during neurodegeneration. Lesioned mice were treated with Mdivi-1 and then examined by a series of behavioral test and histological analyses. The results have shown that the drug may be capable of reducing functional deficits after the lesion and promoting synaptic plasticity and neuroprotection, thus representing a putative translational approach for motoneuron disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Dinámicas Mitocondriales , Neuronas Motoras , Animales , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Dinámicas Mitocondriales/efectos de los fármacos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Toxina del Cólera/metabolismo , Saporinas , Quinazolinonas/farmacología , Plasticidad Neuronal/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
IUBMB Life ; 75(2): 82-96, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121739

RESUMEN

Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.


Asunto(s)
Plantas , Proteínas Inactivadoras de Ribosomas , Animales , Proteínas Inactivadoras de Ribosomas/uso terapéutico , Plantas/metabolismo , Antivirales/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Plantas
4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629149

RESUMEN

We studied changes in the expression of early genes in hippocampal cells in response to stimulation of the dorsal medial septal area (dMSA), leading to long-term potentiation in the hippocampus. Rats under urethane anesthesia were implanted with stimulating electrodes in the ventral hippocampal commissure and dMSA and a recording electrode in the CA1 area of the hippocampus. We found that high-frequency stimulation (HFS) of the dMSA led to the induction of long-term potentiation in the synapses formed by the ventral hippocampal commissure on the hippocampal CA1 neurons. One hour after dMSA HFS, we collected the dorsal and ventral hippocampi on both the ipsilateral (damaged by the implanted electrode) and contralateral (intact) sides and analyzed the expression of genes by qPCR. The dMSA HFS led to an increase in the expression of bdnf and cyr61 in the ipsilateral hippocampi and egr1 in the ventral contralateral hippocampus. Thus, dMSA HFS under the conditions of degeneration of the cholinergic neurons in the medial septal area prevented the described increase in gene expression. The changes in cyr61 expression appeared to be dependent on the muscarinic M1 receptors. Our data suggest that the induction of long-term potentiation by dMSA activation enhances the expression of select early genes in the hippocampus.


Asunto(s)
Anestesia , Uretano , Animales , Ratas , Potenciación a Largo Plazo , Carbamatos , Amidas , Hipocampo , Neuronas Colinérgicas , Electrodos Implantados , Ésteres , Expresión Génica , Succímero
5.
J Neuroinflammation ; 19(1): 31, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109869

RESUMEN

BACKGROUND: The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS: Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS: In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS: Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.


Asunto(s)
Núcleo de Edinger-Westphal , Enfermedad de Parkinson , Animales , Ansiedad , Humanos , Neuronas/fisiología , Ratas , Urocortinas/genética
6.
Chembiochem ; 23(12): e202200115, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35420232

RESUMEN

Protein therapeutics offer exquisite selectivity in targeting cellular processes and behaviors, but are rarely used against non-cell surface targets due to their poor cellular uptake. While cell-penetrating peptides can be used to deliver recombinant proteins to the cytosol, it is generally difficult to selectively deliver active proteins to target cells. Here, we report a recombinantly produced, intracellular protein delivery and targeting platform that uses a photocaged intein to regulate the spatio-temporal activation of protein activity in selected cells upon irradiation with light. The platform was successfully demonstrated for two cytotoxic proteins to selectively kill cancer cells after photoactivation of intein splicing. This platform can generically be applied to any protein whose activity can be disrupted by a fused intein, allowing it to underpin a wide variety of future protein therapeutics.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Inteínas , Empalme de Proteína , Proteínas Recombinantes
7.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32387109

RESUMEN

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Trasplante de Médula Ósea , Proteínas de Homeodominio/genética , Inmunoconjugados/farmacología , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Saporinas/farmacología , Inmunodeficiencia Combinada Grave/terapia , Acondicionamiento Pretrasplante , Aloinjertos , Animales , Anticuerpos Monoclonales/efectos adversos , Proteínas de Homeodominio/inmunología , Inmunoconjugados/efectos adversos , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Ratones , Ratones Noqueados , Saporinas/efectos adversos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología
8.
Eur J Neurosci ; 53(7): 2078-2089, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32569427

RESUMEN

With repeated practice, learned actions become more skilled, and eventually highly stereotypical. This transition is accompanied by a shift in striatal control over behaviour from ventral and dorsomedial striatum to dorsolateral striatum. The cholinergic interneurons (CINs) in the striatum are central to striatal computation. Yet, their role in the transition from motivated to stereotypic behaviour is still unclear. In this study, we examined whether CINs contribute to the competition between both control systems. We selectively lesioned CINs in the nucleus accumbens (NAc) or in the dorsolateral striatum (DLS) of rats trained in a cued maze task. After obtaining skilled performance, we manipulated the motivation for reward. While sparing task acquisition, selective lesions of the CINs had a marked dissociable impact on the sensitivity to motivation in the highly skilled state. Selective lesions of CINs increased automaticity of behaviour when performed in the DLS, but increased sensitivity to motivation in the NAc. These findings indicate a central role of CINs in regulating motivational impact on striatally controlled behaviours.


Asunto(s)
Interneuronas , Núcleo Accumbens , Animales , Colinérgicos , Cuerpo Estriado , Neostriado , Ratas
9.
Neurobiol Learn Mem ; 183: 107484, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175450

RESUMEN

Retrieval deficit of long-term memory is a cardinal symptom of dementia and has been proposed to associate with abnormalities in the central cholinergic system. Difficulty in the retrieval of memory is experienced by healthy individuals and not limited to patients with neurological disorders that result in forgetfulness. The difficulty of retrieving memories is associated with various factors, such as how often the event was experienced or remembered, but it is unclear how the cholinergic system plays a role in the retrieval of memory formed by a daily routine (accumulated experience). To investigate this point, we trained rats moderately (for a week) or extensively (for a month) to detect a visual cue in a two-alternative forced-choice task. First, we confirmed the well-established memory in the extensively trained group was more resistant to the retrieval problem than recently acquired memory in the moderately trained group. Next, we tested the effect of a cholinesterase inhibitor, donepezil, on the retrieval of memory after a long no-task period in extensively trained rats. Pre-administration of donepezil improved performance and reduced the latency of task initiation compared to the saline-treated group. Finally, we lesioned cholinergic neurons of the nucleus basalis magnocellularis (NBM), which project to the entire neocortex, by injecting the cholinergic toxin 192 IgG-saporin. NBM-lesioned rats showed severely impaired task initiation and performance. These abilities recovered as the trials progressed, though they never reached the level observed in rats with intact NBM. These results suggest that acetylcholine released from the NBM contributes to the retrieval of well-established memory developed by a daily routine.


Asunto(s)
Acetilcolina/metabolismo , Núcleo Basal de Meynert/fisiología , Neuronas Colinérgicas/fisiología , Recuerdo Mental/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Anticuerpos Monoclonales/farmacología , Núcleo Basal de Meynert/efectos de los fármacos , Núcleo Basal de Meynert/metabolismo , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Inhibidores de la Colinesterasa/farmacología , Donepezilo/farmacología , Recuerdo Mental/efectos de los fármacos , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Neocórtex/fisiología , Ratas , Saporinas/farmacología
10.
Endocr J ; 68(8): 933-941, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-33867395

RESUMEN

The brain mechanism responsible for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) is important for maintaining reproductive function in mammals. Accumulating evidence suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH and subsequent gonadotropin secretion. Dynorphin A (Dyn) and its receptor, kappa-opioid receptor (KOR, encoded by Oprk1), have been shown to be involved in the suppression of pulsatile GnRH/luteinizing hormone (LH) release. On the other hand, it is still unclear whether the inhibitory Dyn signaling affects KNDy neurons or KOR-expressing non-KNDy cells in the ARC or other brain regions. We therefore aimed to clarify the role of ARC-specific Dyn-KOR signaling in the regulation of pulsatile GnRH/LH release by the ARC specific cell deletion of KOR-expressing cells using Dyn-conjugated-saporin (Dyn-SAP). Estrogen-primed ovariectomized female rats were administered Dyn-SAP to the ARC. In situ hybridization of Oprk1 showed that ARC Dyn-SAP administration significantly decreased the number of Oprk1-expressing cells in the ARC, but not in the ventromedial hypothalamic nucleus and paraventricular nucleus. The frequency of LH pulses significantly increased in animals bearing the ARC Dyn-SAP administration. The number of Kiss1-expressing cells in the ARC was not affected by ARC Dyn-SAP treatment. Dyn-KOR signaling within the ARC seems to mediate the suppression of the frequency of pulsatile GnRH/LH release, and ARC non-KNDy KOR neurons may be involved in the mechanism modulating GnRH/LH pulse generation.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Luteinizante/sangre , Neuronas/metabolismo , Receptores Opioides kappa/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Dinorfinas/administración & dosificación , Femenino , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Saponinas/administración & dosificación
11.
Am J Physiol Endocrinol Metab ; 318(5): E806-E816, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228323

RESUMEN

Previous studies indicate that inhibition of food intake by leptin is mediated by an integrated response to activation of hypothalamic and hindbrain receptors. This study tested whether loss of hindbrain leptin receptor signaling changed sensitivity to forebrain leptin. Injections of leptin-conjugated saporin (Lep-Sap) into the medial nucleus of the solitary tract (NTS) were used to destroy hindbrain leptin receptor-expressing neurons of male Sprague-Dawley rats. Controls were injected with saporin conjugated with a nonsense peptide (Blk-Sap). Lep-Sap had no effect on daily food intake or body weight, but expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) in the NTS following a peripheral injection of leptin was abolished 26 days after Lep-Sap injections. To test forebrain leptin sensitivity, Lep-Sap and Blk-Sap rats received third-ventricle injections of 0, 0.05, 0.1, 0.25, or 0.5 µg leptin. Food intake was inhibited by 0.25 and 0.5 µg leptin in Blk-Sap rats, but there was no significant effect of leptin on food intake of Lep-Sap rats. There was no difference in hypothalamic pSTAT3 in unstimulated conditions, but pSTAT3 was lower in the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH) of Lep-Sap rats compared with Blk-Sap rats following a third-ventricle injection of 0.25 µg leptin. These results are consistent with previous data showing that loss of VMH leptin receptor-expressing cells prevents weight loss caused by fourth-ventricle leptin infusion and show that the integrated response between the hindbrain and forebrain is heavily dependent on leptin activity in the VMH.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Leptina/farmacología , Neuronas/metabolismo , Prosencéfalo/efectos de los fármacos , Receptores de Leptina/metabolismo , Rombencéfalo/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/genética
12.
Immunol Cell Biol ; 98(3): 187-202, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31916611

RESUMEN

The stage-specific embryonic antigen-4 (SSEA-4) is a cell surface glycosphingolipid antigen expressed in early stages of human development. This surface marker is downregulated during the differentiation process but is found re-expressed in several types of tumors, including breast cancer. This feature makes SSEA-4 an attractive target for the development of therapeutic antibodies against tumors. In this work, we first studied the binding and intracellular fate of the monoclonal antibody MC-813-70 directed against SSEA-4. MC-813-70 was found to be rapidly internalized into triple-negative breast cancer cells following binding to its target at the plasma membrane, and to accumulate in acidic organelles, most likely lysosomes. Given the internalization feature of MC-813-70, we next tested whether the antibody was able to selectively deliver the saporin toxin inside SSEA-4-expressing cells. Results show that the immunotoxin complex was properly endocytosed and able to reduce cell viability of breast cancer cells in vitro, either alone or in combination with chemotherapeutic drugs. Our findings indicate that the MC-813-70 antibody has the potential to be developed as an alternative targeted therapeutic agent for cancer cells expressing the SSEA-4 glycolipid.


Asunto(s)
Inmunotoxinas/farmacología , Saporinas/farmacología , Antígenos Embrionarios Específico de Estadio/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Femenino , Humanos , Inmunotoxinas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Saporinas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
13.
Int J Neurosci ; : 1-7, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32916077

RESUMEN

PURPOSE/AIM: The role of cholinergic neurotransmission in the hippocampus remains controversial since different studies showed either no influence or its modulatory effect on glutamatergic hippocampal synapses. It remains unclear whether septal cholinergic input can modulate plasticity of synapses formed by CA3 pyramids on CA1 neurons. The aim of the study was to clarify the role of septal input in the development of LTP in this synapse. MATERIALS AND METHODS: We recorded in vivo in rats under urethane anesthesia focal excitatory postsynaptic potential (fEPSP) characteristics in CA1 area after stimulation of the ventral hippocampal commissure (VHC), which contains both CA3 axons innervating CA1 neurons and cholinergic axons coming from the medial septum. We performed two series of experiments in which LTP was induced by tetanization of either VHC or medial septal area (MSA). Degeneration of cholinergic neurons in MSA was induced by intraseptal injection of 192IgG-saporin. RESULTS: In both experimental series, tetanization induced an increase in fEPSP amplitude which lasted for at least 40 min after tetanic stimulation, although tetanization of VHC induced a larger increase in fEPSP amplitude compared to MSA tetanization. Elimination of septal cholinergic neurons by 192IgG-saporin abolished LTP development in both experimental series. This suppression of LTP in animals with cholinergic deficit was not due to loss of hippocampal neurons. CONCLUSIONS: Our data suggest that activation of septal cholinergic fibers during tetanization is a critical factor of LTP induction in the hippocampal CA3 to CA1 synapses.

14.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228031

RESUMEN

Cholesterol seems to play a central role in the augmentation of saporin-based immunotoxin (IT) cytotoxicity by triterpenoid saponins. Endolysosomal escape has been proposed as one mechanism for the saponin-mediated enhancement of targeted toxins. We investigated the effects of lipid depletion followed by repletion on Saponinum album (SA)-induced endolysosomal escape of Alexa Fluor labelled saporin and the saporin-based immunotoxin OKT10-SAP, directed against CD38, in Daudi lymphoma cells. Lipid deprived cells showed reduced SA-induced endolysosomal escape at two concentrations of SA, as determined by a flow cytometric method. The repletion of membrane cholesterol by low density lipoprotein (LDL) restored SA-induced endolysosomal escape at a concentration of 5 µg/mL SA but not at 1 µg/mL SA. When LDL was used to restore the cholesterol levels in lipid deprived cells, the SA augmentation of OKT10-SAP cytotoxicity was partially restored at 1 µg/mL SA and fully restored at 5 µg/mL SA. These results suggest that different mechanisms of action might be involved for the two different concentrations of SA and that endosomal escape may not be the main mechanism for the augmentation of saporin IT cytotoxicity by SA at the sub-lytic concentration of 1 µg/mL SA.


Asunto(s)
Colesterol/química , Endosomas/efectos de los fármacos , Inmunotoxinas/metabolismo , Lisosomas/efectos de los fármacos , Saponinas/farmacología , Saporinas/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , LDL-Colesterol/farmacología , Relación Dosis-Respuesta a Droga , Endosomas/química , Endosomas/metabolismo , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Inmunotoxinas/química , Linfocitos/química , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Saporinas/química , Ácidos Sulfónicos/química , Triterpenos/farmacología
15.
J Neurosci ; 38(16): 3988-4005, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29572433

RESUMEN

A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 µg/µl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection.SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection.


Asunto(s)
Atención , Neuronas Colinérgicas/fisiología , Potenciales Evocados , Lóbulo Frontal/fisiología , Lóbulo Parietal/fisiología , Acetilcolina/metabolismo , Animales , Anticipación Psicológica , Núcleo Basal de Meynert/citología , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiología , Ritmo beta , Neuronas Colinérgicas/metabolismo , Lóbulo Frontal/citología , Lóbulo Frontal/metabolismo , Masculino , Lóbulo Parietal/citología , Lóbulo Parietal/metabolismo , Ratas , Ratas Long-Evans
16.
Am J Physiol Endocrinol Metab ; 317(4): E586-E596, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361549

RESUMEN

Leptin administration into the hindbrain, and specifically the nucleus of the solitary tract, increases phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation, in hypothalamic nuclei known to express leptin receptors. The ventromedial nucleus of the hypothalamus (VMH) shows the greatest response, with a threefold increase in pSTAT3. This experiment tested the importance of VMH leptin receptor-expressing neurons in mediating weight loss caused by fourth ventricle (4V) leptin infusion. Male Sprague-Dawley rats received bilateral VMH 75-nL injections of 260 ng/µL of leptin-conjugated saporin (Lep-Sap) or blank-saporin (Blk-Sap). After 23 days they were fitted with 4V infusion cannulas and 1 wk later adapted to housing in a calorimeter before they were infused with 0.9 µg leptin/day for 14 days. There was no effect of VMH Lep-Sap on weight gain or glucose clearance before leptin infusion. Leptin inhibited food intake and respiratory exchange ratio in Blk-Sap but not Lep-Sap rats. Leptin had no effect on energy expenditure or brown adipose tissue temperature of either group. Inguinal and epididymal fat were significantly reduced in leptin-treated Blk-Sap rats, but the response was greatly attenuated in Lep-Sap rats. VMH pSTAT3 was increased in leptin-treated Blk-Sap but not Lep-Sap rats. These results support the concept that leptin-induced weight loss results from an integrated response across different brain areas. They also support previous reports that VMH leptin receptors do not play a significant role in maintaining energy balance in basal conditions but limit weight gain during positive energy balance.


Asunto(s)
Cuarto Ventrículo , Leptina/administración & dosificación , Leptina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Leptina/efectos de los fármacos , Receptores de Leptina/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/crecimiento & desarrollo , Animales , Temperatura Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Glucosa/metabolismo , Infusiones Intraventriculares , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/biosíntesis , Factor de Transcripción STAT3/genética , Saporinas/farmacología , Núcleo Hipotalámico Ventromedial/efectos de los fármacos
17.
Epilepsia ; 60(5): e52-e57, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30963545

RESUMEN

Cryptogenic temporal lobe epilepsy develops in the absence of identified brain injuries, infections, or structural malformations, and in these cases, an unidentified pre-existing abnormality may initiate febrile seizures, hippocampal sclerosis, and epilepsy. Although a role for GABAergic dysfunction in epilepsy is intuitively obvious, no causal relationship has been established. In this study, hippocampal GABA neurons were targeted for selective elimination to determine whether a focal hippocampal GABAergic defect in an otherwise normal brain can initiate cryptogenic temporal lobe epilepsy with hippocampal sclerosis. We used Stable Substance P-saporin conjugate (SSP-saporin) to target rat hippocampal GABA neurons, which selectively and constitutively express the neurokinin-1 receptors that internalize this neurotoxin. Bilateral and longitudinally extensive intrahippocampal microinjections of SSP-saporin caused no obvious behavioral effects for several days. However, starting ~4 days postinjection, rats exhibited episodes of immobilization, abnormal flurries of "wet-dog" shakes, and brief focal motor seizures characterized by facial automatisms and forepaw clonus. These clinically subtle behaviors stopped after ~4 days. Convulsive status epilepticus did not develop, and no deaths occurred. Months later, chronically implanted rats exhibited spontaneous focal motor seizures and extreme hippocampal sclerosis. These data suggest that hippocampal GABAergic dysfunction is epileptogenic and can produce the defining features of cryptogenic temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/inducido químicamente , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Saporinas/toxicidad , Sustancia P/análogos & derivados , Animales , Enfermedad Crónica , Giro Dentado/química , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Hipocampo/química , Hipocampo/patología , Masculino , Parvalbúminas/análisis , Ratas , Ratas Sprague-Dawley , Saporinas/farmacología , Esclerosis , Sustancia P/farmacología , Sustancia P/toxicidad , Ácido gamma-Aminobutírico/fisiología
18.
Mol Pharm ; 16(4): 1633-1647, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30817164

RESUMEN

In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas/administración & dosificación , Polímeros/química , Receptor ErbB-2/metabolismo , Saporinas/administración & dosificación , Anticuerpos de Dominio Único/administración & dosificación , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Poliésteres/química , Saporinas/química , Anticuerpos de Dominio Único/inmunología , Células Tumorales Cultivadas
19.
Pharm Res ; 37(1): 16, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873810

RESUMEN

PURPOSE: The aim of this work was to develop a quantitative, flow cytometric method for tracking the endolysosomal escape of a fluorescently labelled saporin toxin. METHODS: Flow cytometric measurements of fluorescent pulse width and height were used to track the endocytic uptake into Daudi cells of a fluorescently labelled saporin toxin and the saporin based immunotoxin, OKT10-SAP. Subsequently, measurement of changes in pulse width were used to investigate the effect of a triterpenoid saponin on the endolysosomal escape of internalised toxin into the cytosol. Live cell confocal microscopy was used to validate the flow cytometry data. RESULTS: Increased endolysosomal escape of saporin and OKT10-SAP was observed by confocal microscopy in cells treated with saponin. Fluorescent pulse width measurements were also able to detect and quantify escape more sensitively than confocal microscopy. Saponin induced endolysosomal escape could be abrogated by treatment with chloroquine, an inhibitor of endolysosomal acidification. Chloroquine abrogation of escape was also mirrored by a concomitant abrogation of cytotoxicity. CONCLUSIONS: Poor endolysosomal escape is often a rate limiting step for the cytosolic delivery of protein toxins and other macromolecules. Pulse width analysis offers a simple method to semi-quantify the endolysosomal escape of this and similar molecules into the cytosol.


Asunto(s)
Antineoplásicos/farmacología , Citosol/metabolismo , Endosomas/metabolismo , Citometría de Flujo/métodos , Inmunoglobulina G/farmacología , Toxinas Biológicas/farmacología , Antineoplásicos/química , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular , Endocitosis , Humanos , Inmunoglobulina G/química , Inmunotoxinas/metabolismo , Lisosomas/metabolismo , Saponinas/química , Saporinas/metabolismo , Transducción de Señal , Toxinas Biológicas/química , Triterpenos/química
20.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917493

RESUMEN

Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.


Asunto(s)
Atrofia Muscular Espinal/fisiopatología , Unión Neuromuscular/fisiopatología , Plasticidad Neuronal , Animales , Toxina del Cólera/toxicidad , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/etiología , Atrofia Muscular Espinal/patología , Unión Neuromuscular/patología , Saporinas/toxicidad , Médula Espinal/patología , Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA