Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int Endod J ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046812

RESUMEN

AIM: Lack of adequate mechanical strength and progressive shrinkage over time remain challenges in scaffold-free microtissue-based dental pulp regeneration. Surface collagen cross-linking holds the promise to enhance the mechanical stability of microtissue constructs and trigger biological regulations. In this study, we proposed a novel strategy for surface preconditioning microtissues using a natural collagen cross-linker, proanthocyanidin (PA). We evaluated its effects on cell viability, tissue integrity, and biomineralization of dental pulp stem cell (DPSCs)-derived 3D cell spheroids. METHODOLOGY: Microtissue and macrotissue spheroids were fabricated from DPSCs and incubated with PA solution for surface collagen cross-linking. Microtissue viability was examined by live/dead staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with transverse dimension change monitored. Microtissue surface stiffness was measured by an atomic force microscope (AFM). PA-preconditioned microtissues and macrotissues were cultured under basal or osteogenic conditions. Immunofluorescence staining of PA-preconditioned microtissues was performed to detect dentin sialophosphoprotein (DSPP) and F-actin expressions. PA-preconditioned macrotissues were subjected to histological analysis, including haematoxylin-eosin (HE), alizarin red, and Masson trichrome staining. Immunohistochemistry staining was used to detect alkaline phosphatase (ALP) and dentin matrix acidic phosphoprotein 1 (DMP-1) expressions. RESULTS: PA preconditioning had no adverse effects on microtissue spheroid viability and increased surface stiffness. It reduced dimensional shrinkage for over 7 days in microtissues and induced a larger transverse-section area in the macrotissue. PA preconditioning enhanced collagen formation, mineralized nodule formation, and elevated ALP and DMP-1 expressions in macrotissues. Additionally, PA preconditioning induced higher F-actin and DSPP expression in microtissues, while inhibition of F-actin activity by cytochalasin B attenuated PA-induced dimensional change and DSPP upregulation. CONCLUSION: PA surface preconditioning of DPSCs spheroids demonstrates excellent biocompatibility while effectively enhancing tissue structure stability and promoting biomineralization. This strategy strengthens tissue integrity in DPSC-derived spheroids and amplifies osteogenic differentiation potential, advancing scaffold-free tissue engineering applications in regenerative dentistry.

2.
Nano Lett ; 23(18): 8770-8778, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37694972

RESUMEN

Multicellular 3D tissue constructs (MTCs) are important in biomedical research due to their capacity to accurately mimic the structure and variation found in real tissues. This study presents a novel bio-orthogonal engineering strategy (BIEN), a transformative scaffold-free approach, to create advanced MTCs. BIEN harnesses the cellular biosynthetic machinery to incorporate bio-orthogonal azide reporters into cell surface glycoconjugates, followed by a click reaction with multiarm PEG, resulting in rapid assembly of MTCs. The implementation of this cutting-edge strategy culminates in the formation of uniform, heterogeneous spheroids, characterized by a high degree of intercellular junction and pluripotency. Remarkably, MTCs simulate tumor features, ensure cell heterogeneity, and significantly improve the subcutaneous xenograft model after transplantation, thereby bolstering both in vitro and in vivo research models. In conclusion, the utilization of the bio-orthogonal engineering strategy as a scaffold-free method to generate superior MTCs holds promising potential for driving advancements in cancer research.


Asunto(s)
Esferoides Celulares , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Membrana Celular , Bioingeniería , Andamios del Tejido/química
3.
Biomed Microdevices ; 25(1): 8, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36826720

RESUMEN

Renal tubule chips have emerged as a promising platform for drug nephrotoxicity testing. However, the reported renal tubule chips hardly replicate the unique structure of renal tubules with thick proximal and distal tubules and a thin loop of Henle. In this study, we developed a fully structured scaffold-free vascularized renal tubule on a microfluidic chip. On the chip, the renal epithelial cell-laden hollow calcium-polymerized alginate tube with thick segments at both ends and a thin middle segment was U-shaped embedded in collagen hydrogel, parallel to the endothelial cell-laden hollow calcium-polymerized alginate tube with uniform tube diameter. After the alginate tubes were on-chip degraded, the renal epithelial cells and endothelial cells automatically attached to the collagen hydrogel and proliferated to form the renal tubule with proximal tubule, loop of Henle and distal tubule as well as peritubular blood vessel. We evaluated the viability of cells on the hollow alginate tubes, characterized the distribution and morphology of cells before and after the degradation of the alginate tube, and confirmed the proliferation of cells and the metabolic function of cells in terms of ATP synthesis, fibronectin secretion and VEGFR2 expression on the chip. The enhanced metabolic functions of renal epithelial cells and endothelial cells were preliminarily demonstrated. This study provides new insights into designing a more biomimetic renal tubule on a microfluidic chip.


Asunto(s)
Calcio , Células Endoteliales , Colágeno , Hidrogeles , Alginatos
4.
Mol Biol Rep ; 50(8): 7017-7025, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37378748

RESUMEN

3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.


Asunto(s)
Técnicas de Cultivo de Célula , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Campos Magnéticos , Esferoides Celulares , Técnicas de Cultivo Tridimensional de Células
5.
Knee Surg Sports Traumatol Arthrosc ; 31(11): 5111-5117, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715051

RESUMEN

PURPOSE: To evaluate clinical, radiographic, and magnetic resonance (MR) results of costal chondrocyte-derived pellet-type scaffold-free autologous chondrocyte implantation (CCP-ACI) in osteochondral defects (ODs) up to 10-mm depth during 5 years of follow-up. METHODS: Ten patients with CCP-ACI performed in ODs with depth up to 10 mm were retrospectively analyzed. The minimum follow-up period was 5 years. The median age was 36.5 (range 20-55) years. The median size and the depth of the OD lesion were 4.25 cm2 (range 2-6) and 7.0 mm (6-9), respectively. Clinically, the International Knee Documentation Committee, Lysholm, and visual analog scale pain scores were evaluated. Radiographically, the hip‒knee‒ankle (HKA) angle and the Kellgren‒Lawrence (K‒L) grade were assessed. On MR imaging, the magnetic resonance observation of cartilage repair tissue (MOCART) 2.0 score and the defect depth were evaluated. RESULTS: All average clinical scores improved significantly by 1, 2, and 5 years postoperatively. The average HKA angle and the proportion of K‒L grade did not change significantly within 5 years. The median total MOCART scores were 50 (range 45-65), 50 (35-90), 57.5 (40-90), and 65 (50-85) at 6 months, 1 year, 2 years, and 5 years postoperatively, respectively (p = 0.001), with significant improvement at 2 years compared to that at 6 months postoperatively. The signal intensity of the repair tissue and subchondral change significantly improved from 10 (range 10-10) to 12.5 (10-15) (p = 0.036), and from 10 (10-10) to 17.5 (0-20) (p = 0.017), respectively. Significant improvements were seen at 5 years postoperatively for the former and at 2 years postoperatively for the latter. The average depths on MR imaging were 6.7, 6.7, 6.8, 6.6, and 6.6 mm preoperatively and at 6 months, 1 year, 2 years, and 5 years postoperatively with no significant changes (n.s). CONCLUSION: CCP-ACI provided acceptable mid-term outcomes in ODs up to 10-mm in depth without bone grafting despite of no scaffold. The procedure can be one of minimally invasive treatment options for ODs without scaffold-related problems. LEVEL OF EVIDENCE: IV.

6.
J Biomech Eng ; 144(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35244139

RESUMEN

Bioreactors are commonly used to apply biophysically relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis, and they offer great flexibility because key features of the stimuli (e.g., duty cycle, frequency, amplitude, and duration) can be controlled to elicit a desired cellular response. However, most bioreactors that apply mechanical and electrical stimulations do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. To enable such exploration, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop. Herein, we develop and calibrate a bioreactor, based on our previously established modified Flexcell system, to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50%, 0.70%, 0.75%, 1.0%, and 1.5%) and voltages (1.5 and 3.5 V), respectively. Following calibration, applied mechanical and electrical stimulations were not statistically different from their desired target values and were consistent whether delivered independently or in combination. Concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (<2%) and electrical (<1%) values, compared to their independently delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue-engineered constructs as they develop.


Asunto(s)
Reactores Biológicos , Ingeniería de Tejidos , Células Cultivadas , Estimulación Eléctrica , Ingeniería de Tejidos/métodos
7.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498908

RESUMEN

The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues. However, the lack of a perfusion system in 3D cell cultures hinders the establishment of the models as potential drug screening platforms. Over the years, multiple techniques have successfully demonstrated vascularization in 3D cell cultures, simulating in vivo-like drug interactions, proposing the use of 3D systems as drug screening platforms to eliminate the deviations between preclinical and in vivo testing. In this review, the basic principles of 3D cell culture systems are briefly introduced, and current research demonstrating the development of vascularization in 3D cell cultures is discussed, with a particular focus on the potential of these models as the future of drug screening platforms.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Técnicas de Cultivo de Célula/métodos , Ingeniería de Tejidos , Evaluación Preclínica de Medicamentos/métodos , Técnicas de Cultivo Tridimensional de Células
8.
Biotechnol Bioeng ; 118(12): 4771-4785, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34559409

RESUMEN

Diamagnetic levitation is an emerging technology for remote manipulation of cells in cell and tissue level applications. Low-cost magnetic levitation configurations using permanent magnets are commonly composed of a culture chamber physically sandwiched between two block magnets that limit working volume and applicability. This work describes a single ring magnet-based magnetic levitation system to eliminate physical limitations for biofabrication. Developed configuration utilizes sample culture volume for construct size manipulation and long-term maintenance. Furthermore, our configuration enables convenient transfer of liquid or solid phases during the levitation. Before biofabrication, we first calibrated/ the platform for levitation with polymeric beads, considering the single cell density range of viable cells. By taking advantage of magnetic focusing and cellular self-assembly, millimeter-sized 3D structures were formed and maintained in the system allowing easy and on-site intervention in cell culture with an open operational space. We demonstrated that the levitation protocol could be adapted for levitation of various cell types (i.e., stem cell, adipocyte and cancer cell) representing cells of different densities by modifying the paramagnetic ion concentration that could be also reduced by manipulating the density of the medium. This technique allowed the manipulation and merging of separately formed 3D biological units, as well as the hybrid biofabrication with biopolymers. In conclusion, we believe that this platform will serve as an important tool in broad fields such as bottom-up tissue engineering, drug discovery and developmental biology.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Imanes , Ingeniería de Tejidos , Animales , Técnicas de Cultivo Tridimensional de Células/instrumentación , Técnicas de Cultivo Tridimensional de Células/métodos , Línea Celular , Diseño de Equipo , Humanos , Ratones , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Células Madre/citología , Células Madre/metabolismo , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
9.
Artif Organs ; 45(6): 548-558, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33264436

RESUMEN

The new coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS-CoV-2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high-throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold-free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS-CoV-2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold-free engineered tissues can contribute to a better comprehension of viral infection by SARS-CoV-2 and to the development of in vitro high-throughput models for drug screening.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Organoides/fisiología , Esferoides Celulares/fisiología , Ingeniería de Tejidos/métodos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Organoides/virología , SARS-CoV-2 , Esferoides Celulares/virología , Andamios del Tejido
10.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884495

RESUMEN

The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.


Asunto(s)
Biomimética , Adhesión Celular , Matriz Extracelular/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Diferenciación Celular , Supervivencia Celular , Humanos
11.
Biotechnol Bioeng ; 117(3): 798-815, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31788785

RESUMEN

Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient-rich oxygenated blood through the vasculature to support cell metabolism within most cell-dense tissues. Since scaffold-free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue-like structures, we generated a generalizable biofabrication method resulting in self-supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO-A5 osteoblast-based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.


Asunto(s)
Bioimpresión/métodos , Reactores Biológicos , Hidrodinámica , Modelos Biológicos , Perfusión/instrumentación , Animales , Línea Celular , Simulación por Computador , Diseño de Equipo , Ratones , Osteoblastos/citología
12.
Artif Organs ; 44(7): E288-E299, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950507

RESUMEN

Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis/fisiología , Células Madre Mesenquimatosas/fisiología , Cultivo Primario de Células/métodos , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Cartílago/citología , Cartílago/ultraestructura , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno Tipo X/metabolismo , Medio de Cultivo Libre de Suero , Matriz Extracelular/metabolismo , Humanos , Hipertrofia , Metaloproteinasa 13 de la Matriz/metabolismo , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
13.
Biotechnol Lett ; 42(11): 2071-2082, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32935182

RESUMEN

Three-dimensional cell culture technology is a novel cell culture technology, which can simulate the growth state of cells in vivo by scaffolds or special devices. Cells can form tissues or organs in vitro. It combines some advantages of traditional cell experiments and animal model experiments. Because of its advantages, it is widely used in clinical medical research, including research on stem cell differentiation, research on cell behavior, migration and invasion, study on microenvironment, study on drug sensitivity and radio-sensitivity of tumor cells, etc. In this paper, the evolution and classification of three-dimensional cell culture are reviewed, also the advantages and shortages are compared. The application of three-dimensional cell culture in clinical medicine are summarized to provide an insight into translational medicine.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Investigación Biomédica Traslacional/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/tendencias , Humanos
14.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187369

RESUMEN

Microtia is a congenital aplasia of the auricular cartilage. Conventionally, autologous costal cartilage grafts are collected and shaped for transplantation. However, in this method, excessive invasion occurs due to limitations in the costal cartilage collection. Due to deformation over time after transplantation of the shaped graft, problems with long-term morphological maintenance exist. Additionally, the lack of elasticity with costal cartilage grafts is worth mentioning, as costal cartilage is a type of hyaline cartilage. Medical plastic materials have been transplanted as alternatives to costal cartilage, but transplant rejection and deformation over time are inevitable. It is imperative to create tissues for transplantation using cells of biological origin. Hence, cartilage tissues were developed using a biodegradable scaffold material. However, such materials suffer from transplant rejection and biodegradation, causing the transplanted cartilage tissue to deform due to a lack of elasticity. To address this problem, we established a method for creating elastic cartilage tissue for transplantation with autologous cells without using scaffold materials. Chondrocyte progenitor cells were collected from perichondrial tissue of the ear cartilage. By using a multilayer culture and a three-dimensional rotating suspension culture vessel system, we succeeded in creating scaffold-free elastic cartilage from cartilage progenitor cells.


Asunto(s)
Cartílago Costal/citología , Cartílago Auricular/citología , Cartílago Elástico/citología , Animales , Células Cultivadas , Condrocitos/citología , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
15.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339388

RESUMEN

Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.


Asunto(s)
Cartílago/citología , Ingeniería de Tejidos/métodos , Simulación de Ingravidez/instrumentación , Cartílago/metabolismo , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Medios de Cultivo/química , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Factores de Transcripción SOX , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Ingeniería de Tejidos/instrumentación , Vimentina/genética , Vimentina/metabolismo
16.
Int J Mol Sci ; 21(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438742

RESUMEN

Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using "mold" or "Kenzan" methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the "mold" or "Kenzan" method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.


Asunto(s)
Tejido Adiposo/citología , Huesos/fisiología , Células Madre Mesenquimatosas/citología , Regeneración/fisiología , Animales , Cartílago Articular/fisiología , Humanos , Andamios del Tejido/química
17.
Molecules ; 25(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751124

RESUMEN

Metabolic bone disease affects hundreds of millions of people worldwide, and as a result, in vitro models of bone tissue have become essential tools to help analyze bone pathogenesis, develop drug screening, and test potential therapeutic strategies. Drugs that either promote or impair bone formation are in high demand for the treatment of metabolic bone diseases. These drugs work by targeting numerous signaling pathways responsible for regulating osteogenesis such as Hedgehog, Wnt/ß-catenin, and PI3K-AKT. In this study, differentiated bone marrow-derived mesenchymal stem cell (BM-MSC) scaffold-free 3D bioprinted constructs and 2D monolayer cultures were utilized to screen four drugs predicted to either promote (Icariin and Purmorphamine) or impair osteogenesis (PD98059 and U0126). Osteogenic differentiation capacity was analyzed over a four week culture period by evaluating mineralization, alkaline phosphatase (ALP) activity, and osteogenesis related gene expression. Responses to drug treatment were observed in both 3D differentiated constructs and 2D monolayer cultures. After four weeks in culture, 3D differentiated constructs and 2D monolayer cultures treated with Icariin or Purmorphamine showed increased mineralization, ALP activity, and the gene expression of bone formation markers (BGLAP, SSP1, and COL1A1), signaling molecules (MAPK1, WNT1, and AKT1), and transcription factors (RUNX2 and GLI1) that regulate osteogenic differentiation relative to untreated. 3D differentiated constructs and 2D monolayer cultures treated with PD98059 or U0126 showed decreased mineralization, ALP activity, and the expression of the aforementioned genes BGLAP, SPP1, COL1A1, MAPK1, AKT1, RUNX2, and GLI1 relative to untreated. Differences in ALP activity and osteogenesis related gene expression relative to untreated cells cultured in a 2D monolayer were greater in 3D constructs compared to 2D monolayer cultures. These findings suggest that our bioprinted bone model system offers a more sensitive, biologically relevant drug screening platform than traditional 2D monolayer in vitro testing platforms.


Asunto(s)
Bioimpresión , Evaluación Preclínica de Medicamentos/métodos , Osteogénesis/efectos de los fármacos , Impresión Tridimensional , Ingeniería de Tejidos , Fosfatasa Alcalina/metabolismo , Bioimpresión/métodos , Huesos/citología , Huesos/metabolismo , Técnicas de Cultivo de Célula , Humanos , Modelos Biológicos
18.
Artif Organs ; 43(3): 278-287, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30374978

RESUMEN

This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.


Asunto(s)
Enfermedades de los Cartílagos/cirugía , Cartílago Articular/cirugía , Cultivo Primario de Células/métodos , Ingeniería de Tejidos/métodos , Animales , Enfermedades de los Cartílagos/patología , Cartílago Articular/citología , Cartílago Articular/lesiones , Cartílago Articular/patología , Condrocitos/trasplante , Modelos Animales de Enfermedad , Matriz Extracelular/trasplante , Humanos , Masculino , Conejos , Resultado del Tratamiento
19.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443173

RESUMEN

Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.


Asunto(s)
Regeneración Ósea/fisiología , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Regeneración Ósea/genética , Diferenciación Celular/fisiología , Masculino , Ratones , Ratones SCID , Osteogénesis/fisiología , Ingeniería de Tejidos , Microtomografía por Rayos X
20.
J Cell Mol Med ; 22(6): 2964-2969, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29536627

RESUMEN

Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as "scaffolds," usually printable hydrogels also called "bioinks"). Importantly, several limitations of scaffold-dependent bioprinting can be avoided by the "scaffold-free" methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold-free bioprinting, as applied to cardiovascular tissue engineering.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Bioimpresión/tendencias , Enfermedades Cardiovasculares/terapia , Sistema Cardiovascular/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Humanos , Hidrogeles/uso terapéutico , Ingeniería de Tejidos/tendencias , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA