Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.417
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(11): 2472-2491, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967530

RESUMEN

Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.


Asunto(s)
Hormonas Esteroides Gonadales , Neoplasias , Embarazo , Femenino , Masculino , Humanos , Estrógenos/farmacología , Estrógenos/fisiología , Progestinas , Andrógenos/farmacología , Esteroides , Inmunidad , Caracteres Sexuales
2.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992711

RESUMEN

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores Dopaminérgicos
3.
Annu Rev Neurosci ; 44: 1-25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236890

RESUMEN

Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.


Asunto(s)
Individualidad , Dolor , Humanos , Dolor/genética
4.
Proc Natl Acad Sci U S A ; 121(24): e2404364121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833469

RESUMEN

Sex difference (SD) is ubiquitous in humans despite shared genetic architecture (SGA) between the sexes. A univariate approach, i.e., studying SD in single traits by estimating genetic correlation, does not provide a complete biological overview, because traits are not independent and are genetically correlated. The multivariate genetic architecture between the sexes can be summarized by estimating the additive genetic (co)variance across shared traits, which, apart from the cross-trait and cross-sex covariances, also includes the cross-sex-cross-trait covariances, e.g., between height in males and weight in females. Using such a multivariate approach, we investigated SD in the genetic architecture of 12 anthropometric, fat depositional, and sex-hormonal phenotypes. We uncovered sexual antagonism (SA) in the cross-sex-cross-trait covariances in humans, most prominently between testosterone and the anthropometric traits - a trend similar to phenotypic correlations. 27% of such cross-sex-cross-trait covariances were of opposite sign, contributing to asymmetry in the SGA. Intriguingly, using multivariate evolutionary simulations, we observed that the SGA acts as a genetic constraint to the evolution of SD in humans only when selection is sexually antagonistic and not concordant. Remarkably, we found that the lifetime reproductive success in both the sexes shows a positive genetic correlation with anthropometric traits, but not with testosterone. Moreover, we demonstrated that genetic variance is depleted along multivariate trait combinations in both the sexes but in different directions, suggesting absolute genetic constraint to evolution. Our results indicate that testosterone drives SA in contemporary humans and emphasize the necessity and significance of using a multivariate framework in studying SD.


Asunto(s)
Fenotipo , Caracteres Sexuales , Testosterona , Humanos , Masculino , Femenino , Análisis Multivariante
5.
Annu Rev Pharmacol Toxicol ; 63: 565-583, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662582

RESUMEN

The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.


Asunto(s)
Dolor Crónico , Neuralgia , Femenino , Humanos , Masculino , Dolor Crónico/tratamiento farmacológico , Caracteres Sexuales , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuronas
6.
Immunol Rev ; 309(1): 86-89, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35726344

RESUMEN

After more than 20 years of studying sex differences in viral pathogenesis and immunity to vaccines, the COVID-19 pandemic provided me with a unique opportunity to raise awareness about biological sex differences. The scientific community and public, alike, embraced the clinical and epidemiological data and supported inquiries into how males are twice as likely to be hospitalized and die from COVID-19. Immunological changes associated with pregnancy also contribute to worse outcomes from COVID-19. Collectively, we are finding that inflammation is a critical mediator of worse outcomes for males and pregnant females. The pandemic gave me a platform to discuss and address sex differences on a bigger stage, but two decades of studies working with other viruses prepared me for this moment in history.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Femenino , Humanos , Masculino , Embarazo , Salud de la Mujer
7.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38866486

RESUMEN

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation-induced (ES; 60 Hz) DA release was recorded in the NAc of single- or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than that in males. Finally, DA release following ES of the medial forebrain bundle at 60 Hz was studied over 4 weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, and sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.


Asunto(s)
Cuerpo Estriado , Dopamina , Estimulación Eléctrica , Núcleo Accumbens , Caracteres Sexuales , Animales , Masculino , Núcleo Accumbens/metabolismo , Femenino , Dopamina/metabolismo , Ratas , Cuerpo Estriado/metabolismo , Estimulación Eléctrica/métodos , Ratas Sprague-Dawley , Vivienda para Animales , Ovariectomía , Metanfetamina/farmacología
8.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35195254

RESUMEN

In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.


Asunto(s)
Proteínas de Drosophila , Resistencia a la Insulina , Animales , Tamaño Corporal , Dieta , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Insulina/metabolismo , Larva/metabolismo , Masculino , Azúcares/metabolismo
9.
Brain ; 147(4): 1497-1510, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37988283

RESUMEN

Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/patología , Fosforilación , Encéfalo/patología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Tomografía de Emisión de Positrones , Biomarcadores/metabolismo
10.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451300

RESUMEN

Although previous studies have reported the sex differences in behavior/cognition and the brain, the sex difference in the relationship between memory abilities and the underlying neural basis in the aging process remains unclear. In this study, we used a machine learning model to estimate the association between cortical thickness and verbal/visuospatial memory in females and males and then explored the sex difference of these associations based on a community-elderly cohort (n = 1153, age ranged from 50.42 to 86.67 years). We validated that females outperformed males in verbal memory, while males outperformed females in visuospatial memory. The key regions related to verbal memory in females include the medial temporal cortex, orbitofrontal cortex, and some regions around the insula. Further, those regions are more located in limbic, dorsal attention, and default-model networks, and are associated with face recognition and perception. The key regions related to visuospatial memory include the lateral prefrontal cortex, anterior cingulate gyrus, and some occipital regions. They overlapped more with dorsal attention, frontoparietal and visual networks, and were associated with object recognition. These findings imply the memory performance advantage of females and males might be related to the different memory processing tendencies and their associated network.


Asunto(s)
Reconocimiento Facial , Caracteres Sexuales , Anciano , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo , Cognición , Citoplasma
11.
J Neurosci ; 43(8): 1298-1309, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36650060

RESUMEN

17ß-estradiol (E2) is synthesized in the hippocampus of both sexes and acutely potentiates excitatory synapses in each sex. Previously, we found that the mechanisms for initiation of E2-induced synaptic potentiation differ between males and females, including in the molecular signaling involved. Here, we used electrical stimulation and two-photon glutamate uncaging in hippocampal slices from adult male and female rats to investigate whether the downstream consequences of distinct molecular signaling remain different between the sexes or converge to the same mechanism(s) of expression of potentiation. This showed that synaptic activity is necessary for expression of E2-induced potentiation in females but not males, which paralleled a sex-specific requirement in females for calcium-permeable AMPARs (cpAMPARs) to stabilize potentiation. Nonstationary fluctuation analysis of two-photon evoked unitary synaptic currents showed that the postsynaptic component of E2-induced potentiation occurs either through an increase in AMPAR conductance or in nonconductive properties of AMPARs (number of channels × open probability) and never both at the same synapse. In females, most synapses (76%) were potentiated via increased AMPAR conductance, whereas in males, more synapses (60%) were potentiated via an increase in nonconductive AMPAR properties. Inhibition of cpAMPARs eliminated E2-induced synaptic potentiation in females, whereas some synapses in males were unaffected by cpAMPAR inhibition; these synapses in males potentiated exclusively via increased AMPAR nonconductive properties. This sex bias in expression mechanisms of E2-induced synaptic potentiation underscores the concept of latent sex differences in mechanisms of synaptic plasticity in which the same outcome in each sex is achieved through distinct underlying mechanisms.SIGNIFICANCE STATEMENT Estrogens are synthesized in the brains of both sexes and potentiate excitatory synapses to the same degree in each sex. Despite this apparent similarity, the molecular signaling that initiates estrogen-induced synaptic potentiation differs between the sexes. Here we show that these differences extend to the mechanisms of expression of synaptic potentiation and result in distinct patterns of postsynaptic neurotransmitter receptor modulation in each sex. Such latent sex differences, in which the same outcome is achieved through distinct underlying mechanisms in males versus females, indicate that molecular mechanisms targeted for drug development may differ between the sexes even in the absence of an overt sex difference in behavior or disease.


Asunto(s)
Estradiol , Hipocampo , Ratas , Femenino , Animales , Masculino , Estradiol/farmacología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Estrógenos/metabolismo , Sinapsis/fisiología , Potenciación a Largo Plazo/fisiología
12.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37821229

RESUMEN

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Habénula , Receptores Purinérgicos P2 , Masculino , Adolescente , Femenino , Humanos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Transmisión Sináptica , Neuronas Colinérgicas , Receptores Purinérgicos P2/fisiología , Adenosina Trifosfato/farmacología
13.
J Neurosci ; 43(44): 7322-7336, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722849

RESUMEN

The medial preoptic area (MPOA) is a sexually dimorphic region of the brain that regulates social behaviors. The sexually dimorphic nucleus (SDN) of the MPOA has been studied to understand sexual dimorphism, although the anatomy and physiology of the SDN is not fully understood. Here, we characterized SDN neurons that contribute to sexual dimorphism and investigated the mechanisms underlying the emergence of such neurons and their roles in social behaviors. A target-specific neuroanatomical study using transgenic mice expressing Cre recombinase under the control of Calb1, a gene expressed abundantly in the SDN, revealed that SDN neurons are divided into two subpopulations, GABA neurons projecting to the ventral tegmental area (VTA), where they link to the dopamine system (CalbVTA neurons), and GABA neurons that extend axons in the MPOA or project to neighboring regions (CalbnonVTA neurons). CalbVTA neurons were abundant in males, but were scarce or absent in females. There was no difference in the number of CalbnonVTA neurons between sexes. Additionally, we found that emergence of CalbVTA neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. Chemogenetic analyses of CalbVTA neurons indicated a role in modulating sexual motivation in males. Knockdown of Calb1 in the MPOA reduced the intromission required for males to complete copulation. These findings provide strong evidence that a male-specific neural pathway from the MPOA to the VTA is organized by the two-step actions of testicular androgens for the modulation of sexually motivated behavior.SIGNIFICANCE STATEMENT The MPOA is a sexually dimorphic region of the brain that regulates social behaviors, although its sexual dimorphism is not fully understood. Here, we describe a population of MPOA neurons that contribute to the sexual dimorphism. These neurons only exist in masculinized brains, and they project their axons to the ventral tegmental area, where they link to the dopamine system. Emergence of such neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. These MPOA neurons endow masculinized brains with a neural pathway from the MPOA to the ventral tegmental area and modulate sexually motivated behavior in males.


Asunto(s)
Andrógenos , Área Preóptica , Animales , Ratones , Femenino , Masculino , Área Preóptica/fisiología , Andrógenos/metabolismo , Área Tegmental Ventral , Dopamina/metabolismo , Vías Nerviosas , Ratones Transgénicos
14.
Semin Cell Dev Biol ; 126: 45-55, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33994299

RESUMEN

The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.


Asunto(s)
Relojes Circadianos , Animales , Ritmo Circadiano/fisiología , Femenino , Masculino , Caracteres Sexuales , Núcleo Supraquiasmático/fisiología
15.
Plant J ; 113(6): 1192-1210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626115

RESUMEN

Meiotic recombination is crucial for assuring proper segregation of parental chromosomes and generation of novel allelic combinations. As this process is tightly regulated, identifying factors influencing rate, and distribution of meiotic crossovers (COs) is of major importance, notably for plant breeding programs. However, high-resolution recombination maps are sparse in most crops including the Brassica genus and knowledge about intraspecific variation and sex differences is lacking. Here, we report fine-scale resolution recombination landscapes for 10 female and 10 male crosses in Brassica oleracea, by analyzing progenies of five large four-way-cross populations from two reciprocally crossed F1s per population. Parents are highly diverse inbred lines representing major crops, including broccoli, cauliflower, cabbage, kohlrabi, and kale. We produced approximately 4.56T Illumina data from 1248 progenies and identified 15 353 CO across the 10 reciprocal crosses, 51.13% of which being mapped to <10 kb. We revealed fairly similar Mb-scale recombination landscapes among all cross combinations and between the sexes, and provided evidence that these landscapes are largely independent of sequence divergence. We evidenced strong influence of gene density and large structural variations on CO formation in B. oleracea. Moreover, we found extensive variations in CO number depending on the direction and combination of the initial parents crossed with, for the first time, a striking interdependency between these factors. These data improve our current knowledge on meiotic recombination and are important for Brassica breeders.


Asunto(s)
Brassica , Meiosis , Brassica/clasificación , Brassica/citología , Brassica/genética , Fitomejoramiento , Recombinación Genética , Cromosomas de las Plantas
16.
Neuroimage ; 298: 120807, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179012

RESUMEN

Mental rotation has emerged as an important predictor for success in science, technology, engineering, and math fields. Previous studies have shown that males and females perform mental rotation tasks differently. However, how the brain functions to support this difference remains poorly understood. Recent advancements in neuroimaging techniques have enabled the identification of sex differences in large-scale brain network connectivity. Using a classic mental rotation task with functional magnetic resonance imaging, the present study investigated whether there are any sex differences in large-scale brain network connectivity for mental rotation performance. Our results revealed that, relative to females, males exhibited less cross-network interaction (i.e. lower inter-network connectivity and participation coefficient) of the visual network but more intra-network integration (i.e. higher intra-network connectivity and local efficiency) and cross-network interaction (i.e. higher inter-network connectivity and participation coefficient) of the salience network. Across all participants, mental rotation performance was negatively correlated with cross-network interaction (i.e. participation coefficient) of the visual network, was positively correlated with cross-network interaction (i.e. inter-network connectivity) of the salience network, and was positively correlated with intra-network integration (i.e. local efficiency) of the somato-motor network. Interestingly, the cross-network integration indexes of both the visual and salience networks significantly mediated sex difference in mental rotation performance. The present findings suggest that large-scale brain network connectivity may constitute an essential neural basis for sex difference in mental rotation, and highlight the importance of considering sex as a research variable in investigating the complex network underpinnings of spatial cognition.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Caracteres Sexuales , Humanos , Masculino , Femenino , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imaginación/fisiología , Rotación , Mapeo Encefálico/métodos , Percepción Espacial/fisiología , Vías Nerviosas/fisiología
17.
Neuroimage ; 292: 120609, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614371

RESUMEN

Current diagnostic systems for Alzheimer's disease (AD) rely upon clinical signs and symptoms, despite the fact that the multiplicity of clinical symptoms renders various neuropsychological assessments inadequate to reflect the underlying pathophysiological mechanisms. Since putative neuroimaging biomarkers play a crucial role in understanding the etiology of AD, we sought to stratify the diverse relationships between AD biomarkers and cognitive decline in the aging population and uncover risk factors contributing to the diversities in AD. To do so, we capitalized on a large amount of neuroimaging data from the ADNI study to examine the inflection points along the dynamic relationship between cognitive decline trajectories and whole-brain neuroimaging biomarkers, using a state-of-the-art statistical model of change point detection. Our findings indicated that the temporal relationship between AD biomarkers and cognitive decline may differ depending on the synergistic effect of genetic risk and biological sex. Specifically, tauopathy-PET biomarkers exhibit a more dynamic and age-dependent association with Mini-Mental State Examination scores (p<0.05), with inflection points at 72, 78, and 83 years old, compared with amyloid-PET and neurodegeneration (cortical thickness from MRI) biomarkers. In the landscape of health disparities in AD, our analysis indicated that biological sex moderates the rate of cognitive decline associated with APOE4 genotype. Meanwhile, we found that higher education levels may moderate the effect of APOE4, acting as a marker of cognitive reserve.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Disfunción Cognitiva , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Apolipoproteínas E/genética , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Imagen por Resonancia Magnética , Neuroimagen , Tomografía de Emisión de Positrones
18.
Neuroimage ; 295: 120660, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815676

RESUMEN

The topological organization of the macroscopic cortical networks important for the development of complex brain functions. However, how the cortical morphometric organization develops during the third trimester and whether it demonstrates sexual and individual differences at this particular stage remain unclear. Here, we constructed the morphometric similarity network (MSN) based on morphological and microstructural features derived from multimodal MRI of two independent cohorts (cross-sectional and longitudinal) scanned at 30-44 postmenstrual weeks (PMW). Sex difference and inter-individual variations of the MSN were also examined on these cohorts. The cross-sectional analysis revealed that both network integration and segregation changed in a nonlinear biphasic trajectory, which was supported by the results obtained from longitudinal analysis. The community structure showed remarkable consistency between bilateral hemispheres and maintained stability across PMWs. Connectivity within the primary cortex strengthened faster than that within high-order communities. Compared to females, male neonates showed a significant reduction in the participation coefficient within prefrontal and parietal cortices, while their overall network organization and community architecture remained comparable. Furthermore, by using the morphometric similarity as features, we achieved over 65 % accuracy in identifying an individual at term-equivalent age from images acquired after birth, and vice versa. These findings provide comprehensive insights into the development of morphometric similarity throughout the perinatal cortex, enhancing our understanding of the establishment of neuroanatomical organization during early life.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Caracteres Sexuales , Humanos , Femenino , Masculino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/anatomía & histología , Recién Nacido , Estudios Transversales , Estudios Longitudinales , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/anatomía & histología , Embarazo
19.
Neuroimage ; 291: 120598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555995

RESUMEN

It has been observed that one's Behavioral Approach System (BAS) can have an effect on decision-making under uncertainty, although the results have been mixed. To discern the underlying neural substrates, we hypothesize that sex may explain the conflicting results. To test this idea, a large sample of participants was studied using resting state fMRI, utilizing fractional Amplitude of Low Frequency Fluctuations (fALFF) and Resting-State Functional Connectivity (rsFC) techniques. The results of the Iowa Gambling Task (IGT) revealed an interaction between sex and BAS, particularly in the last 60 trials (decision-making under risk). Males with high BAS showed poorer performance than those with low BAS. fALFF analysis showed a significant interaction between BAS group and sex in the left superior occipital gyrus, as well as the functional connectivity between this region and the left ventrolateral prefrontal cortex. Additionally, this functional connectivity was further positively correlated with male performance in the IGT, particularly in the decision-making under risk stage. Furthermore, it was found that the functional connectivity between left ventrolateral prefrontal cortex and left superior occipital gyrus could mediate the relationship between BAS and decision-making in males, particularly in the decision-making under risk stage. These results suggest possible sex-based differences in decision-making, providing an explanation for the inconsistent results found in prior research. Since the research was carried out exclusively with Chinese university students, it is essential to conduct further studies to investigate whether the findings can be generalized.


Asunto(s)
Juego de Azar , Motivación , Humanos , Masculino , Toma de Decisiones , Corteza Prefrontal/diagnóstico por imagen , Corteza Cerebral , Imagen por Resonancia Magnética
20.
Am J Physiol Endocrinol Metab ; 327(5): E626-E635, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39259165

RESUMEN

The liver plays a major role in glucose and lipid homeostasis and acts as a key organ in the pathophysiology of metabolic diseases. Intriguingly, increased sympathetic nervous system (SNS) activity to the liver has been associated with the development and progression of type 2 diabetes and obesity. However, the precise mechanisms by which the SNS regulates hepatic metabolism remain to be defined. Although liver α1-adrenoceptors were suggested to play a role in glucose homeostasis, the specific subtypes involved are unknown mainly because of the limitations of pharmacological tools. Here, we generated and validated a novel mouse model allowing tissue-specific deletion of α-1b adrenoceptor (Adra1b) in hepatocytes to investigate the role of liver ADRA1B in energy and glucose metabolism. We found that selective deletion of Adra1b in mouse liver has limited metabolic impact in lean mice. However, loss of Adra1b in hepatocytes exacerbated diet-induced obesity, insulin resistance, and glucose intolerance in female, but not in male mice. In obese females, this was accompanied by reduced hepatic gluconeogenic capacity and reprogramming of gonadal adipose tissue with hyperleptinemia. Our data highlight sex-dependent mechanisms by which the SNS regulates energy and glucose homeostasis through liver ADRA1B.NEW & NOTEWORTHY The sympathetic nervous system plays an important role in regulating hepatic physiology and metabolism. However, the identity of the adrenoceptors involved in these effects is still elusive. Using CRISPR-Cas9, we developed a novel transgenic tool to study the role of liver α-1b adrenoceptor (ADRA1B). We show that ADRA1B plays a key role in mediating the effects of the sympathetic nervous system on hepatic metabolism, particularly in female mice.


Asunto(s)
Metabolismo Energético , Glucosa , Hepatocitos , Homeostasis , Hígado , Obesidad , Receptores Adrenérgicos alfa 1 , Animales , Femenino , Ratones , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Hígado/metabolismo , Homeostasis/fisiología , Masculino , Glucosa/metabolismo , Metabolismo Energético/fisiología , Hepatocitos/metabolismo , Obesidad/metabolismo , Obesidad/genética , Resistencia a la Insulina/fisiología , Ratones Noqueados , Sistema Nervioso Simpático/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Ratones Endogámicos C57BL , Gluconeogénesis/genética , Gluconeogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA