Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295429

RESUMEN

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Asunto(s)
Ataxina-2 , Enfermedades Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Unión a Poli(A) , Enfermedades Neurodegenerativas/metabolismo , Condensados Biomoleculares
2.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645368

RESUMEN

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Biotinilación , Centrosoma/metabolismo , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
3.
Trends Biochem Sci ; 48(8): 713-725, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37173206

RESUMEN

Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.


Asunto(s)
Fosfoproteínas Fosfatasas , Humanos , Fosforilación , Fosfoproteínas Fosfatasas/metabolismo , Dominio Catalítico , Holoenzimas/química , Holoenzimas/metabolismo , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 120(48): e2316599120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988460

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades are essential for eukaryotic cells to integrate and respond to diverse stimuli. Maintaining specificity in signaling through MAPK networks is key to coupling distinct inputs to appropriate cellular responses. Docking sites-short linear motifs found in MAPK substrates, regulators, and scaffolds-can promote signaling specificity through selective interactions, but how they do so remains unresolved. Here, we screened a proteomic library for sequences interacting with the MAPKs extracellular signal-regulated kinase 2 (ERK2) and p38α, identifying selective and promiscuous docking motifs. Sequences specific for p38α had high net charge and lysine content, and selective binding depended on a pair of acidic residues unique to the p38α docking interface. Finally, we validated a set of full-length proteins harboring docking sites selected in our screens to be authentic MAPK interactors and substrates. This study identifies features that help define MAPK signaling networks and explains how specific docking motifs promote signaling integrity.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteómica , Unión Proteica , Transducción de Señal , Fosforilación , Sitios de Unión
5.
EMBO J ; 40(8): e103811, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33644875

RESUMEN

HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Adulto , Sitios de Unión , Células Cultivadas , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación Missense , Unión Proteica , Multimerización de Proteína
6.
Mol Syst Biol ; 20(9): 1025-1048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009827

RESUMEN

Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.


Asunto(s)
Mutación , Proteoma , Humanos , Proteoma/genética , Unión Proteica , Secuencias de Aminoácidos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Biblioteca de Péptidos , Mapas de Interacción de Proteínas , Polimorfismo de Nucleótido Simple
7.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091472

RESUMEN

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Bacterias/patogenicidad , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Evolución Biológica , Línea Celular , Regulación Viral de la Expresión Génica/genética , Interacciones Microbiota-Huesped/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Virosis/genética , Virosis/metabolismo , Replicación Viral/fisiología , Virus/patogenicidad
8.
Biochem Biophys Res Commun ; 703: 149658, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38387229

RESUMEN

Adaptor proteins play a pivotal role in cellular signaling mediating a multitude of protein-protein interaction critical for cellular homeostasis. Dysregulation of these interactions has been linked to the onset of various cancer pathologies and exploited by viral pathogens during host cell takeover. CrkL is an adaptor protein composed of an N-terminal SH2 domain followed by two SH3 domains that mediate interactions with diverse partners through the recognition of specific binding motifs. In this study, we employed proteomic peptide-phage display (ProP-PD) to comprehensively explore the short linear motif (SLiM)-based interactions of CrkL. Furthermore, we scrutinized how the binding affinity for selected peptides was influenced in the context of the full-length CrkL versus the isolated N-SH3 domain. Importantly, our results provided insights into SLiM-binding sites within previously reported interactors, as well as revealing novel human and viral ligands, expanding our understanding of the interactions mediated by CrkL and highlighting the significance of SLiM-based interactions in mediating adaptor protein function, with implications for cancer and viral pathologies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Técnicas de Visualización de Superficie Celular , Mapeo de Interacción de Proteínas , Humanos , Sitios de Unión , Neoplasias , Péptidos , Unión Proteica , Proteómica/métodos , Dominios Homologos src/fisiología , Técnicas de Visualización de Superficie Celular/métodos , Proteínas Adaptadoras Transductoras de Señales/metabolismo
9.
Infect Immun ; 91(9): e0008523, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37530530

RESUMEN

Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and ß-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.


Asunto(s)
Ehrlichia chaffeensis , Vía de Señalización Hippo , Transportador de Glucosa de Tipo 1/metabolismo , Ligandos , Proteínas Reguladoras de la Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ehrlichia chaffeensis/genética
10.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466276

RESUMEN

Intrinsically disordered proteins and regions with their associated short linear motifs play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates interactions between MYC and MYB transcription factors in Arabidopsis thaliana that are critical for constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense compounds that evolved in the ancestor of the Brassicales order. We used a diverse set of search strategies to discover additional occurrences of the MIM in other proteins and in other organisms and evaluate the findings by means of structural predictions, interaction assays, and biophysical experiments. Our search revealed numerous MIM instances spread throughout the angiosperm lineage. Experiments verify that several of the newly discovered MIM-containing proteins interact with MYC TFs. Only hits found within the same transcription factor family and having similar characteristics could be validated, indicating that structural predictions and sequence similarity are good indicators of whether the presence of a MIM mediates interaction. The experimentally validated MIMs are found in organisms outside the Brassicales order, showing that MIM function is broader than regulating GLS biosynthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Secuencias Hélice-Asa-Hélice/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/genética , Proteínas Intrínsecamente Desordenadas/genética , Factores de Transcripción/genética
11.
J Proteome Res ; 19(8): 3254-3263, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32579367

RESUMEN

Protein complexes with short linear motifs (SLiMs) are known to play important regulatory functions in eukaryotes. In this investigation, I have studied the structures deposited in PDB with SLiMs. The structures were grouped into three broad categories of protein-protein, protein-peptide, and the rest as others. Protein-peptide complexes were found to be most highly represented. The interfaces were evaluated for geometric features and conformational variables. It was observed that protein-protein and protein-peptide complexes show characteristic differences in residue pairings, which were quantified by evaluating normalized contact residue pairing frequencies. Interface residues adopt characteristic canonical residue conformations in the Ramachandran space, with a pronounced preference for positive ϕ conformations. It was observed that phosphorylated residues have an unusual propensity to adopt the positive ϕ conformations at the interface.


Asunto(s)
Péptidos , Proteínas , Secuencias de Aminoácidos , Bases de Datos de Proteínas , Conformación Molecular , Conformación Proteica , Proteínas/genética
12.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645240

RESUMEN

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.

13.
Protein Sci ; 33(8): e5094, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989636

RESUMEN

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.


Asunto(s)
Proteínas de Andamiaje Homer , Proteínas de Andamiaje Homer/metabolismo , Proteínas de Andamiaje Homer/química , Proteínas de Andamiaje Homer/genética , Humanos , Dominios Proteicos , Unión Proteica , Secuencias de Aminoácidos
14.
Cell Rep ; 43(8): 114624, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154341

RESUMEN

Chlamydia trachomatis, a leading cause of bacterial sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs [inclusion membrane proteins]) into the inclusion membrane. Here, we characterize IncE, a multifunctional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C terminus. The proximal SLiM, by mimicking just a small portion of an R-N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) motif, binds and recruits syntaxin (STX)7- and STX12-containing vesicles to the inclusion. The distal SLiM mimics the sorting nexin (SNX)5 and SNX6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding two distinct vesicle classes, IncE brings these vesicles in close apposition with each other at the inclusion to facilitate C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to enable rapid evolution in a limited protein space to disrupt host cell processes.


Asunto(s)
Proteínas Bacterianas , Chlamydia trachomatis , Chlamydia trachomatis/metabolismo , Humanos , Proteínas Bacterianas/metabolismo , Células HeLa , Secuencias de Aminoácidos , Transporte de Proteínas , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética , Proteínas Qa-SNARE/metabolismo , Unión Proteica
15.
FEBS J ; 290(23): 5581-5604, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37665644

RESUMEN

Functional networks in cells are created by physical, genetic, and regulatory interactions. Mapping them and annotating their functions by available methods remains a challenge. We use affinity purification mass spectrometry (AP-MS) coupled with SLiMFinder to discern such a network involving 26S proteasome non-ATPase regulatory subunit 9 (PSMD9), a chaperone of proteasome assembly. Approximately 20% of proteins within the PSMD9 interactome carry a short linear motif (SLiM) of the type 'EXKK'. The binding of purified PSMD9 with the peptide sequence ERKK, proteins heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1; containing ERKK), and peroxiredoxin-6 (PRDX6; containing EAKK) provided proof of principle for this motif-driven network. The EXKK motif in the peptide primarily interacts with the coiled-coil N domain of PSMD9, a unique interaction not reported for any coiled-coil domain. PSMD9 knockout (KO) HEK293 cells experience endoplasmic reticulum (ER) stress and respond by increasing the unfolded protein response (UPR) and reducing the formation of aggresomes and lipid droplets. Trans-expression of PSMD9 in the KO cells rescues lipid droplet formation. Overexpression of PSMD9 in HEK293 cells results in reduced UPR, and increased lipid droplet and aggresome formation. The outcome argues for the prominent role of PSMD9 in maintaining proteostasis. Probable mechanisms involve the binding of PSMD9 to binding immunoglobulin protein (BIP/GRP78; containing EDKK), an endoplasmic reticulum chaperone and key regulator of the UPR, and fatty acid synthase (FASN; containing ELKK), involved in fatty acid synthesis/lipid biogenesis. We propose that PSMD9 acts as a buffer in the cellular milieu by moderating the UPR and enhancing aggresome formation to reduce stress-induced proteotoxicity. Akin to waves created in ponds that perpetuate to a distance, perturbing the levels of PSMD9 would cause ripples down the networks, affecting final reactions in the pathway, one of which is altered proteostasis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteostasis , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis/genética , Células HEK293 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico , Proteínas Portadoras/genética , Péptidos/genética
16.
Front Cell Infect Microbiol ; 13: 1150758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960039

RESUMEN

As an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that E. chaffeensis has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. E. chaffeensis establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses. TRP120 activates these pathways using multiple functionally distinct, repetitive, eukaryote-mimicking short linear motifs (SLiMs) located within the tandem repeat domain that have evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and activate cellular signaling, thereby repurposing these pathways to promote infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of post-translational modifications such as SUMOylation in addition to many other validated SLiMs that are curated in the eukaryotic linear motif (ELM) database. This review will explore the extracellular and intracellular roles TRP120 SLiM-icry plays during infection - mediated through a variety of SLiMs - that enable E. chaffeensis to subvert mononuclear phagocyte innate defenses.


Asunto(s)
Ehrlichia chaffeensis , Interacciones Huésped-Patógeno , Monocitos/metabolismo , Ehrlichia chaffeensis/metabolismo , Procesamiento Proteico-Postraduccional , Línea Celular , Proteínas Bacterianas/genética
17.
Methods Mol Biol ; 2705: 153-197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37668974

RESUMEN

The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.


Asunto(s)
Aminoácidos , Dominios Homologos src , Fosfotirosina , Linaje de la Célula , Membrana Celular
18.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790431

RESUMEN

RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.

19.
Front Mol Biosci ; 10: 1249939, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908230

RESUMEN

Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic ß-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic ß-cells.

20.
Methods Mol Biol ; 2627: 231-245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959451

RESUMEN

Intrinsically disordered regions (IDRs) are protein regions that do not adopt fixed tertiary structures. Since these regions lack ordered three-dimensional structures, they should be excluded from the target portions of homology modeling. IDRs can be predicted from the amino acid sequences, because their amino acid compositions are different from that of the structured domains. This chapter provides a review of the prediction methods of IDRs and a case study of IDR prediction.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Secuencia de Aminoácidos , Aminoácidos , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA