Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257529

RESUMEN

This paper presents a novel unscented Kalman filter (UKF) implementation with adaptive covariance matrices (ACMs), to accurately estimate the longitudinal and lateral components of vehicle velocity, and thus the sideslip angle, tire slip angles, and tire slip ratios, also in extreme driving conditions, including tyre-road friction variations. The adaptation strategies are implemented on both the process noise and measurement noise covariances. The resulting UKF ACM is compared against a well-tuned baseline UKF with fixed covariances. Experimental test results in high tyre-road friction conditions show the good performance of both filters, with only a very marginal benefit of the ACM version. However, the simulated extreme tests in variable and low-friction conditions highlight the superior performance and robustness provided by the adaptation mechanism.

2.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123893

RESUMEN

Nowadays, control is pervasive in vehicles, and a full and accurate knowledge of vehicle states is crucial to guarantee safety levels and support the development of Advanced Driver-Assistance Systems (ADASs). In this scenario, real-time monitoring of the vehicle sideslip angle becomes fundamental, and various virtual sensing techniques based on both vehicle dynamics models and data-driven methods are widely presented in the literature. Given the need for on-board embedded device solutions in autonomous vehicles, it is mandatory to find the correct balance between estimation accuracy and the computational burden required. This work mainly presents different physical KF-based methodologies and proposes both mathematical and graphical analysis to explore the effectiveness of these solutions, all employing equal tire and vehicle simplified models. For this purpose, results are compared with accurate sensor acquisition provided by the on-track campaign on passenger vehicles; moreover, to truthfully represent the possibility of using such virtual sensing techniques in real-world scenarios, the vehicle is also equipped with low-end sensors that provide information to all the employed observers.

3.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447727

RESUMEN

This paper presents a state-of-the-art estimation technique by cross-combining a number n of filters for high-precision, reliable and robust vehicle sideslip angle state estimation, over a full range of vehicle operations irrespective of the driving mission and disruptions that may occur in the system. A machine-learning algorithm based on decision trees connects several filters together to switch between them according to the driving context, ensuring the best possible state estimate for relatively small and large sideslip angle values. In conjunction with the above-mentioned aspects, a seamless transition between different vehicle models is attained by observing the key parameters characterizing the lateral motion of the vehicle. The tests conducted using a prototype vehicle on a snow-covered track confirm the effectiveness and reliability of the proposed approach.


Asunto(s)
Algoritmos , Aprendizaje Automático , Reproducibilidad de los Resultados , Árboles de Decisión
4.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591076

RESUMEN

In this article, a real-time vehicle sideslip angle state observer is proposed, which is based on the EKF algorithm. Firstly, based on a 2-DOF dynamical model and the tire lateral force model, the vehicle sideslip angle state observer model with a self-adapted truncation procedure is established by combining the EKF and the least squares methods. The calculation of the Jacobi matrix in the time domain is transformed into a calculation in the frequency domain. A self-adapted update noise estimation method and an initial value setting strategy are proposed as well. Finally, a hardware-in-the-loop simulation is carried out by Matlab/Simulink-CarSim-dSPACE, and the real-time reliability of the estimation method is verified and analyzed by RMSE.

5.
Sensors (Basel) ; 21(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450851

RESUMEN

Sideslip angle is an important variable for understanding and monitoring vehicle dynamics, but there is currently no inexpensive method for its direct measurement. Therefore, it is typically estimated from proprioceptive sensors onboard using filtering methods from the family of the Kalman filter. As a novel alternative, this work proposes modeling the problem directly as a graphical model (factor graph), which can then be optimized using a variety of methods, such as whole-dataset batch optimization for offline processing or fixed-lag smoothing for on-line operation. Experimental results on real vehicle datasets validate the proposal, demonstrating a good agreement between estimated and actual sideslip angle, showing similar performance to state-of-the-art methods but with a greater potential for future extensions due to the more flexible mathematical framework. An open-source implementation of the proposed framework has been made available online.

6.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630099

RESUMEN

Presently, autonomous vehicles are on the rise and are expected to be on the roads in the coming years. In this sense, it becomes necessary to have adequate knowledge about its states to design controllers capable of providing adequate performance in all driving scenarios. Sideslip and roll angles are critical parameters in vehicular lateral stability. The later has a high impact on vehicles with an elevated center of gravity, such as trucks, buses, and industrial vehicles, among others, as they are prone to rollover. Due to the high cost of the current sensors used to measure these angles directly, much of the research is focused on estimating them. One of the drawbacks is that vehicles are strong non-linear systems that require specific methods able to tackle this feature. The evolution in Artificial Intelligence models, such as the complex Artificial Neural Network architectures that compose the Deep Learning paradigm, has shown to provide excellent performance for complex and non-linear control problems. In this paper, the authors propose an inexpensive but powerful model based on Deep Learning to estimate the roll and sideslip angles simultaneously in mass production vehicles. The model uses input signals which can be obtained directly from onboard vehicle sensors such as the longitudinal and lateral accelerations, steering angle and roll and yaw rates. The model was trained using hundreds of thousands of data provided by Trucksim® and validated using data captured from real driving maneuvers using a calibrated ground truth device such as VBOX3i dual-antenna GPS from Racelogic®. The use of both Trucksim® software and the VBOX measuring equipment is recognized and widely used in the automotive sector, providing robust data for the research shown in this article.

7.
Sensors (Basel) ; 18(4)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677124

RESUMEN

Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

8.
ISA Trans ; 141: 261-275, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451922

RESUMEN

This paper addresses the problem of guidance and control for underactuated unmanned surface vehicles (USVs) with state constraints and input saturation, in support of enabling an underactuated USV to follow a parameterized curved path in the case of unknown sideslip angle and cross-tracking error constraint. First, a cross-tracking error constraint line-of-sight (LOS) guidance law with sideslip angle compensation is originally designed to guide an underactuated USV to convergence to the desired path within a time-varying cross-tracking error constraint. Second, a novel nonlinear mapping (NM) function is first constructed to map the heading and surge control subsystems with state constraints to unconstrained nonlinear systems, transforming the constrained control problem into the unconstrained control problem. Subsequently, adaptive fuzzy control laws are designed to achieve the control objectives for the USV using the new unconstrained nonlinear systems with unknown disturbance and input saturation. Then, a series of theoretical analyses using input-to-state stability theories are presented to prove the boundness of the tracking errors for the underactuated USV during path following. Finally, numerical results obtained using a physics-based simulation model are shown to reveal the effectiveness of the guidance and control algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA