Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160407

RESUMEN

Zinc (Zn)-manganese dioxide (MnO2) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO2 battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMn2O4) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO2 batteries as an alternative to liquid electrolytes. The manuscript also reports on novel properties of the gelled electrolyte such as limiting the overdischarge of Zn anodes, which is a problem in liquid electrolyte, and finally its use in solar microgrid applications, which is a first in academic literature. Potentiostatic and galvanostatic tests with the optimized gel electrolyte showed higher capacity retention compared to the tests with the liquid electrolyte, suggesting that gel electrolyte helps reduce Mn3+ dissolution and zincate ion migration from the Zn anode, improving reversibility. Cycling tests for commercially sized prismatic cells showed the gel electrolyte had exceptional cycle life, showing 100% capacity retention for >700 cycles at 9.5 Ah and for >300 cycles at 19 Ah, while the 19 Ah prismatic cell with a liquid electrolyte showed discharge capacity degradation at 100th cycle. We also performed overdischarge protection tests, in which a commercialized prismatic cell with the gel electrolyte was discharged to 0 V and achieved stable discharge capacities, while the liquid electrolyte cell showed discharge capacity fade in the first few cycles. Finally, the gel electrolyte batteries were tested under IEC solar off-grid protocol. It was noted that the gelled Zn-MnO2 batteries outperformed the Pb-acid batteries. Additionally, a designed system nameplated at 2 kWh with a 12 V system with 72 prismatic cells was tested with the same protocol, and it has entered its third year of cycling. This suggests that Zn-MnO2 rechargeable batteries with the gel electrolyte will be an ideal candidate for solar microgrid systems and grid storage in general.

2.
Sci Adv ; 3(5): e1602153, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560328

RESUMEN

This article assesses the socioeconomic effects of solar microgrids. The lack of access to electricity is a major obstacle to the socioeconomic development of more than a billion people. Off-grid solar technologies hold potential as an affordable and clean solution to satisfy basic electricity needs. We conducted a randomized field experiment in India to estimate the causal effect of off-grid solar power on electricity access and broader socioeconomic development of 1281 rural households. Within a year, electrification rates in the treatment group increased by 29 to 36 percentage points. Daily hours of access to electricity increased only by 0.99 to 1.42 hours, and the confidence intervals are wide. Kerosene expenditure on the black market decreased by 47 to 49 rupees per month. Despite these strong electrification and expenditure effects, we found no systematic evidence for changes in savings, spending, business creation, time spent working or studying, or other broader indicators of socioeconomic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA